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This status report describes work completed during the period January 31,

1992 to July 31, 1992. The following report describes two research projects. First,

an ecological task analysis of the Star Cruiser task was performed and

documented. On the basis of this analysis, a number of interface deficiencies

were identified. As described in the January 31 status report, these deficiences

will be eliminated through two alternative means: display enhancement and

decision aiding. These two forms of aiding will be subsequently compared.

At this point in time, a new display for Star Cruiser has been constructed

on the basis of the results of the ecological task analysis, as described below. In

essence, the enhanced display provides perceptual support for actions for which

the original display provided only meager or no support. An experiment is

currently being performed comparing the efficacy of the original Star Cruiser

display with the new, perceptually enhanced display. This experiment uses eight

subjects in each display group, and is scheduled to run for sixteen ten-minute

sessions for each subject. Each session uses a different initial conditions file. In

the following, we present empirical data on the first six sessions of this

experiment (the first six Sessions beyond two half-hour training sessions).

The preliminary results are unequivocal. Performance in the perceptually

enhanced display condition averages 35% higher than performance in the

original display condition (performance measure is points scored). As can be

seen by the enclosed graph of the results, the learning curves for the group means

show no overlap over these sessions. It will be interesting to see whether this

difference is maintained, increased, or attenuated, over the following ten

experimental sessions.

The second research effort described here is completed work on modeling

skilled decision-making using neural network and genetic-algorithm machine

learning techniques. This secti'on of the report consists of a Masters Thesis by

Ling Rothrock.



Ecological Task Analysis of Star Cruiser

An ecological task analysis was performed on the Star Cruiser simulation.

Expert subjects were created by having them continually practice the game until

it appeared their learning curve had reached a plateau (approximately 20

sessions). These experts were then videotaped while playing Star Cruiser.

Verbal protocols and written questionnaires were also given to the subjects.

Reviewing these three items for each subject revealed the strategies the experts

were using. As a result, each task in the analysis is described in terms of how the

strategies involved it, whether or not perceptual cues existed to trigger that bit of

strategy, and whether or not cues existed to indicate the availability of the actions

comprising the task. The observations made during this analysis suggest

possible enhancements that may be incorporated into the simulation's display

interface. (These have not been included in this document.) Once an enhanced

interface has been created, additional subjects will be used to determine if it is

better than the original. The quality of the display will be measured by the

subjects' performances (indicated by their score and the number of errors

committed) on the new display compared to other subjects' performances on the

original.



DeployP._

A probe may be deployed at any time except forwhen the Star Cruiser is

docked at the Star Base. Deploying probes has no effecton points or fuel

consumption and can thereforebe done without great effecton the system states.

Subjects used the probes to obtain information concerning ninth orbitalsand solar

systems' supply of information.

When determining which solar system to go to,subjectswould dispatch

probes to those systems, usually those with the brightestsuns, under

consideration. They would then be allowed to view the planets in those systems

and ascertain the amount ofinformation availablefor collectionin each. This

strategy was often unnecessary since the brightest suns, by definition,contained

the largestamounts of information. The only benefititserved was to help choose

which system to go to amongst those with the brightest suns. Other factorsoRen

contributed to this decisionas well,though. Proximity to the Star Cruiser, the

closeness of neighboring solarsystems (subjects'strategiesinvolve collecting

more data from a grouping of solar systems), and the remaining time in the

session oRen served as determinants in deciding which solar system to enter first.

As mentioned, probes were also used to locate the ninth orbitalaround a

sun. Subjects used theirknowledge ofthe probe'sorbitalpath to help locatethe

proper orbitalforStar Cruiser. This was not necessary at alltimes since other

cues existto help find the proper orbital(referto Move Star Cruiser into Orbit).

These strategiesare driven by the subjects'desireto obtain additional

information about the galaxy. There are no cues that the subjectsperceive which

cause them to perform thisaction. In other words, the need to perform this action

is only inferredby the subjects,no information isgiven instructing them to do so.

This method of learning about the galaxy isgenerally a waste of time, however.

Perceptual cues currently existto provide allthe same information to the subjects

(i.e.,sun color,planets orbitingnear the ninth orbital).As previously stated,the

only time that probes may not be deployed iswhen the Star Cruiser is docked at

Star Base. There are no perceptual cues, though, that inform the subjectsof this.

Only theirinabilityto do so suggests to the subjectsthat a probe cannot be deployed

at that time. Also, the only cue that existsto indicatethat a probe may be selected

fordeployment is when the user isable to highlight one at the top of the screen.

This poses a problem, however, when the Star Cruiser enters a solar system

while a subject is attempting to perform thisaction. On two separate occasions,



with two different subjects, this resulted in the Star Cruiser crashing into the

sun. The subjects selected a probe to deploy while the Star Cruiser was in the

galaxy view. During this process, the cruiser drifted into a solar system. The

subjects' initial, and only, reactions upon seeing the Star Cruiser drifting towards

the sun was to apply a thrust to the cruiser away from the sun. The probe,

however, was still selected for deployment. As a result, the only actions the

subjects could do successfully would be either to pull a string from the Star

Cruiser to the sun to deploy the probe or to unselect the probe. Since the subjects

were concerned solely with applying a thrust to the cruiser, they did not realize

that they had to perform one of the other actions first. As a result, the thrust was

not applied to the Star Cruiser and it crashed into the sun. Though their inability

to perform the desired thrust action serves as a cue, it is embedded to deeply

within the structure of the interface _ be of use. The subjects simply feel that the

applied thrust was not great enough to overcome the sun's gravitational pull and

they continually try the action again. Some other form of cue is required in this

situation to indicate to the subjects that they are performing an action

unsuccessfully and that they should attempt another. The cue must serve to

enlighten the subjects that their intended action is one that is not readily

available.

Overall, there is no special need for using perceptual cues to inform the

user when to deploy a probe. Most information that can be gained by doing so is

present at all times. Cues that exist, though, at the depth structure level,

especially those which indicate that the user needs to unselect a probe to perform

a thrust, need to be brought to the surface. In addition, perceptual cues should

indicate to the user when it is and is not possible to deploy probes.

Recall

A probe may only be recalled when the Star Cruiser is in orbit in the same

solar system as the probe and the current view is of that system. If these

conditions are met, then the user may select the probe and draw a line back to the

Star Cruiser to recall it. Recalling a probe has no effect on fuel consumption or

points and can be time consuming. The only benefit is that the user now has an

additional probe which may be deployed. Therefore, if the user determines that

enough probes are present on beard the Star Cruiser to complete the session, then



there is no reason why a probe should be recalled at any time. This agrees with

the strategies of most of the expert subjects. One subject would, however, recall a

probe while Star Cruiser was waiting for the collection tools to finish gathering

information from the planets. His reasoning was that since Star Cruiser has

visited the solar system, the amount of information present will always be

displayed on the sun in the galaxy view. Therefore, if there are few probes which

may be deployed, since he is not perfo_ any other actions while waiting for

the collection tools, he can recall the probe and not waste any time. This was also

dependent on his confidence of be_ able to locate the ninth orbital if he ever

returned to the same solar system in the future. Of course,ifallinformation has

been gathered from the planets in that system, then there willbe no need to ever

return.

Though there are no perceptual cues on the surface which indicate that

this action should be performed, the user may determine to do itbased on the

number of probes displayed along the top of the screen. Whether or not a user will

recalla probe willultimately depend on whether or not itisfeltthat itwillbe used

again. Currently, only the user'sstrategy of the session,including the time

remaining and where the cruisershould be sent to in that time, willcontribute to

the decision to perform this action. As with the subject discussed previously,

there are those who do always recallthe probes though, if,fornothing else,to

practice the task of recallingan object. Because of this action'sinsignificanceto

the overallgoal of the user (collectinformation and return itto the Star Base), as

well as everyone possessing a differentstrategy of the current session being

played, itis probably unnecessary to incorporate cues which directlyinform the

user that a probe should be recalled.

Perceptual cues which inform the user when this action can and cannot be

performed are also lacking at the surface. Though subjectshad very little

difficultywith determining this,there does existthe potentialfor some confusion.

Since a probe may be deployed at almost any time, the riskis present that a user

may think that itcan be recalledat almost any time. This lineof reasoning is

further supported by the factthat in the galaxy view, the deployed probes are

pictured next to theirappropriate solar systems. Though this bitof information

may be helpful in determining where the probes are located,itcan also cause the

user to adopt the wrong retrievalstrategy. To avoid the mis-specificationbetween

the cue (displayedprobes) and a,possibleaction itmay indicate (can recallthe

probes),the cue should eitherbe altered or eliminated. This is so even though the



user'sinabilityto recalla probe may indicatethat s/he is using an improper

retrievalstrategy. The key here isnot to correctthe user once the mistake is

made, but to prevent the mistake from being made in the firstplace.

A user may relatethe retrievalofa probe to that of a collectiontool. This

would then serve as a cue to the user: since a toolmay only be recalledwhile the

Star Cruiser isin orbit,the same theory may be devised for the probes. Though

thiswould be correct,the users should not be subjected to the burden of

rationalizingthis for themselves. This similaritybetween recallingthe toolsand

the probes should be evident from the display itself.Taking allinto consideration,

forthe display to contain the proper cues, itmust not only inform the user of when

the probes can be recalled,but itmust not mislead the user into thinking they can

be when they truly cannot.

Deploy Collection Tool

Only under certain conditions may a user deploy one of the four collection

tools: satellites, robot miners, science ships, and minerships. The Star Cruiser

must be in orbit around a sun which also has orbiting planets. In addition, the

user must be viewing that system. If the user wishes to deploy either a science

ship or a minership, then planets which support life, green planets, must also be

present in the solar system.

Each subject possessed a different strategy for determining where and

when to deploy collection tools. One subject, for instance, would first send out

science ships and minerships whenever possible before satellites and robot

miners. Her strategy was to collect as much information as possible as quickly as

possible. She viewed the collection of data and resources using the science ships

and minerships to be quicker since she would not be required to make as many

deploymentL She, more than any other subject, appeared to have the greatest

difficulty with performing the necessary tracking task required to deploy the

collection tools. Another subject would normally deploy only satellites and robot

miners since these did not move from planet to planet and she was thus better

able to remember how much info_tion they had collected. Only if one green

planet was present would she then send out a science ship or minership. This

strategy was developed in order to reduce the risk of a science ship or minership

collecting to much information and thus overloading the cruiser when it is



recalled. The subject would also deploy as many tools as she had available, even if

the cruiser would not be able to carry all of the information. It was her reasoning

that she could always return to the system aRer unloading the Star Cruiser at the

Star Base and recall the re_ng tools. A third subject had yet a different

strategy for deploying collection tools. He, like the first subject, would deploy

science ships and minerships first. Unlike the first subject though, this subject

would send out multiple science ships and minerships to speed up the collection

process even more. This subject differed from the other two in that, alter

recalling the other tools, he would deploy satellites and robot miners to other

planets to collect a fraction of their data and/or resources. His strategy focused on

returning to the Star Base with the Star Cruiser as fully loaded as possible

whereas the other subjects were content with the cruiser not being as full. He

usually did not leave tools in the solar system once he had the cruiser leave.

There did seem to be one bit of strategy that all subjects had in common though.

In deciding where to send a collection tool, the subjects generally did not send

more than one data collecting tool (sateRite or science ship) or resource collecting

tool (robot miner or minership) to the same planet.

The fact that all subjects had differing strategies serves as evidence to the

lack of perceptual cues that exist for aiding the users in deciding when and where

to deploy the collection tools. If these cues were present to indicate when to

perform the action, then there would most likely be more similarities between

each subject's strategy. This is illustrated by the subjects' common attitude that if

a tool is already collecting one type of information from the planet, then no other

tool which collects similar information should be deployed to that planet. A cue

does exist for this even though it isinforming the subjects not to perform the

action rather then to do so. Whenacoll_on tool is deployed to a planet, it is

displayed next to it. Therefore, the user can see which tools have been sent to

which planets. As a result, the user knows _t the deployment of any other tool

to that planet (which collects similar information) is essentially pointless since

the tool presently there will collect all of the data or resources that the planet

contains. The only benefit that deploying another tool which collects the same

type of information to that planet would possibly serve is that one tool will not be

transporting to much to the cruiser, and thus overload it, once it is recalled. This

never seemed apparent to the subjects since they were not observed performing an

action of this type. This is mostly likely due to the lack of cues which would



inform them of how much each tool has collected, let alone whether this action

was even possible.

None of the subjects appeared to have difficulty determining when the

deployment of tools could be performed. The subjects were instructed during their

training about the conditions that must be met in order to perform this action.

With this knowledge, they were able to recognize easily when the conditions were

satisfied. Perceptual cues, such as the Star Cruiser being highlighted upon

reaching orbit, the absence of the cruiser and/or the planets when the subjects

were looking at a view of the galaxy or another solar system, and whether or not

any planets were present in that solar system at all, also provided the necessary

support in determining when the action could or could not be performed. The fact

that the tools were always present at the top of the screen, thus appearing as if

they could be selected even when they could not, did not cause the subjects any

difficulties. If, for some reason, they tried to select one of the tools when that

action could not be performed, they would soon discover that their attempt was not

allowed due to their failure to do so. Overall, the cues were successful at

specifying the availability of the action.

There was, however, one area of underspecification. Though they knew

they could perform some type of deployment, the subjects had problems

determining which tools should be used to collect which information and which

type of planets they could be sent to. Most of the subjects eventually memorized

the differences between the tools. There was one subject though, that had

difficulty throughout the sessions. The tools themselves provide no cues as to

what they do. They are not ceded in any fashion whether it be, for example, color,

size, or location (at the top of the _n where they may be selected). Some form

of cues should be incorporated into the display in an effort to assist the user.

Successful implementation of such cues should result in the user's reduced

confusion concerning each type of toors functions and constraints as well as

reducing their need to rely on memory to determine them.

Deploying collection tools was consistently rated as one of the more difficult

actions to perform. Though much of this is attributed to the tracking task

involved, some of the blame can be placed on the amount of mental effort the

subjects had to use in order to accomplish the action. This is suggested by this

action being rated slightly more difficult then that of recalling a tool which

essentially incorporates the same type of tracking task. The subjects had to

remember which type of planet each tool could be sent to as well as what each



collected. Even more difficult though, they had to determine exactly which planet

to send a tool to. This often required the subject to take into consideration the

amount of data/resources available on that planet (indicated by the "pie pieces"

displayed on each), the amount currently on board the Star Cruiser, the amount

of data/resources being currently collected by other tools, whether the deployed

tool would move from planet to planet, and how much time was left in the

mission. Though much, but not all, of this information was presented to the

subjects in one form or another, they were required to interpret each bit and relate

each piece of information to the others in order to make a decision. This was often

quite complex and thus it is tmderstandable why this action was rated to be so

difficult. The proper use of present perceptual cues, in addition to the

introduction of new ones, should help to make this action an easier one for the

users to perform.

Recall Collection Tool

In order to recall collection tools, similar criteria as that for deploying the

tools must be satisfied. This includes viewing a solar system where the Star

Cruiser is in orbit. The only difference in the criteria is that, in that system, tools,

deployed earlier, must still be located at the planets.

Subjects generally used similar strategies in determining when it was, and

was not, appropriate to recall a collection tool. The subjects would recall a tool if

two conditions were satisfied. The first is that the tool had finished collecting all

of the data/resources that were available. The other was that there was room

aboard the cruiser to carry the collected information. The remaining time left in

the mission also played a role in dete_ning if a tool should be recalled or

abandoned so that the cruiser could return to the Star Base with what was already

on board.

The subjects had very little difficulty in determining when they could

perform this action. Cues were present and noticeable to indicate when a tool

could be recalled. As in deployment, the highlighting of the Star Cruiser once it is

in orbit informs the user that that portion of the criteria has been satisfied. In

addition, the subjects knew which tools could be recalled due to them being

displayed next to a planet in the solar system. Confusion does exist, however, in

determining which tool will be recalled first when multiple tools are present at



the same planet. Since their displayed icons overlap, there is no apparent cue to

indicate which tool will be recalled firstwhen the user selects one. In order to

overcome this, the subjects were instructed that the order of recall was identical to

the order, from leR to right, of collectiontools displayed at the top of the screen. It

was observed though, that even with this knowledge, the subjects would attempt to

recall one tool from a planet containing multiples, and inadvertently recall the

wrong one. As a result, they would usually recall the correct tool and then deploy

the one that was incorrectly brought back in order to finish collecting the available

information at that planet. This problem could be avoided by simply locating each

type of tool in a different position around the planets. With this exception, the

availability of this action was generally well perceived by the subjects from the

existing perceptual cues.

The ease in deciding whether or not to perform this action was variable

throughout the mission. It greatly depended on the second of the two criteria

mentioned earlier - how much data/resources the Star Cruiser currently had on

beard. If the cruiser was empty, then sufficient perceptual cues existed to suggest

to the user that s/he recall a tool. The fact that the tool had completed collecting

all possible information would be _n_ca_ by the disappearance of the "pie

pieces" which show how much data/resources is present on the planet. Since the

gauges which convey how much information the Star Cruiser contains would be

empty, the user would know that recalling a tool was more than likely an

appropriate action to perform. As the Star Cruiser contained more and more

information though, the decision to _ a tool became more and more difficult.

Even though the user could still readily determine if the tool had completed its

collection task, insufficient cues existed to inform the user whether or not the

information collected could be safely loaded onto the cruiser. The problem is that

no direct relationship exists between how much of the information, represented by

the pie pieces, is collected and how much the gauges indicating the cruiser's load

will increase once those tools are recalled.

Unless it was learned exactly how many pie pieces completely loaded the

cruiser (which two subjects did over ten sessions), the user would never be quite

sure how much additional data/resources can be brought onto the cruiser before it

exceeds capacity. Even when it was learned that, for example, three full planets

completely loaded the cruiser, difficulties still arose when the subjects were forced

to deal with planets which contain only a fraction of their total capacity of

information. This problem was compounded further by the pie pieces for two



masons. One is that the same size pie piece represented a range of amount of

data or resources. For example, a half of a pie piece (one full pie piece equals one

half the size of the planet) of data could represent between one-fourth and one-half

of the planets capacity for a type of information. There is no way to determine the

exact amount. Contributing even more to the problem is that the gauges

indicating the cruiser's current load merely present qualitative information - how

full is the Star Cruiser. As a result, it is also difficult to determine exactly how

much data/resources the cruiser Mready contains as well as how much the

gauges will increase by collecting a certain size pie piece. The second reason is

that the pieces will disappear as the information is collected. Though this serves

as a good cue indicating when the collection process is complete, unless the user

remembers how big of a pie piece was present before the tool was deployed to the

planet, there is no way for the user to know how much data/resources the tool has

collected. This is especially true for science ships and minerships which can visit

multiple planets before being recalled. This is an even greater problem when the

user has done something (i.e., returned the cruise to the Star Base) which results

in the viewing of the galaxy or another solar system.

The goal of the user is to collect as much information as possible and return

it to the Star Base. As a result, this action of recalling collection tools is one of the

most crucial. The users' success at completing their mission ultimately depend

on their ability to make good decisions concerning when and when not to recall a

collection tool. The display should be designed to aid the decision-making process,

not hinder it. Therefore, enhancements should be made to the current display in

order to improve the users' chances of success. Creating gauges and pie pieces

which have direct relationships is one such improvement. Others may include

memory aids which will help the users remember exactly how much information

has been collected by a tool. Warnings can also be incorporated indicating when

the Star Cruiser has reached near capacity or even when the recall of a particular

tool will overload it. These are just some Of the possible enhancements which can

assist the users in deciding when to recall a tool. As a result, not only should the

users' performance of this action improve, but so should that of their overall

mission as well.

Place Star Cruiser Into Orbit



The Star Cruiser will achieve orbit around a sun if it passes through the

sun's ninth orbital at a slow enough speed. This of course means that the user

must place the cruiser in the solar system view which contains the sun to be

orbited.

Subjects shared a similar reason for wanting the Star Cruiser to obtain

orbit - to deploy collection tools. Unless they had taken the cruiser out of orbit

while tools were collecting information, the subjects generally did not try to place

the ship into orbit for the sole purpose of recalling collection tools. This also is

true for probes. If a subject made the decision to recall a probe, it was only while

the Star Cruiser was already in orbit.

Only previous instruction lets the user know that s/he must obtain orbit.

Since it is known that the Star Cruiser must be in orbit in order to perform any

actions regarding the collection tools, once the decision has been made to deploy or

recall a tool, the user knows that the cruiser must be placed in orbit. Thus, in a

sense, those cues which aid the user in deciding whether or not to deploy or recall

tools (i.e., presence of pie pieces on planets; absence of planets) also serve as cues

to put the ship into orbit. There is, however, no direct mapping between the

desired action of deploying or recalling a tool and the necessary means for doing

so such as first obtaining orbit. As a result, those users who do not receive

instructions prior to attempting a mission may try to deploy a tool while the

cruiser is not in orbit. Of course, their failure to complete this action will indicate

to them that something is wrong, but they would most likely be unable to

determine what.

Assuming that the user knows that the Star Cruiser must be in orbit, very

few perceptual cues are required to indicate the availability of the action.

Knowing that the ninth orbital must be located, the user generally realizes that

only in a view of a solar system may this action be attempted. Thus, once the

cruiser moves into a view of a solar system, no other requirements must be met in

order to attempt this action.

The dit_culty concerning this action, according to the subjects, was not in

determining when to perform the action nor if the action could be performed. It

was in performing the action itself that presented the most trouble. The subjects

often complained about how hard it was to locate the ninth orbital, let alone get the

Star Cruiser moving at the proper unknown speed so it would follow the orbital

around the sun. As a result, they Were often requiredto continually adjust the

cruiser's direction and speed until the cruiser reached orbit. A frustrating



process which often wasted valuable time. Regarding the speed, there are no cues

whatsoever which would indicate to the user that the ship has the proper velocity

for obtaining orbit. Only upon seeing the cruiser obtain orbit (Star Cruiser is

highlighted) will the user have any idea of what the proper speed is. The user,

however, usually has difficulty remembering what the speed was, or duplicating

it, since s/he is required to match it to a pictorial representation of the cruiser's

movements. No quantitative information is provided. There are several cues,

though not intuitive,which may be utilizedin locatingthe ninth orbitalaround a

sun. The firstisto use the planets as a guide. Eventually itshould be learned

that the furthestorbitalfora planet isone lessthen that of the cruiser.This

allows the user to approximate the ninth orbitarslocationbased on the orbitalsof

the existingplanets. Another cue that may be learned over time isthat the orbital

isellipticalin shape and that the top ofitisaligned with the top ofthe solar

system view. The user can then "picture"the path that the orbitaltakes starting

at the top ofthe view and attempt to have the cruiserinterceptthat pictured path.

A third method forfinding the orbital,one consistentlyperformed by several of the

subjects, is to dispatch a probe in the solar system where the cruiser is to obtain

orbit. Once again something that is learned through practice, the users soon

realize that the probe travels around the sun in the ninth orbital. This "trick"

allows the user to deploy a probe to identify the orbital which can then be easily

located while attempting to place the cruiser. So though cues do exist to show

where the orbital is located, they are not readily perceived by the user unless their

existence has been learned.

While the amount of perceptual cues indicating that this action should be

performed and that it can be might _ sumcient, additional cues should be added

to assist the user in placing the Star Cruiser into orbit. To be effective, the cues

would need to alert the user to the location of the ninth orbital. This can simply be

accomplished by highlighting the orbital in some manner. In addition, some

form of a cue should be used to indicate when the cruiser is at the required speed

for obtaining orbit. This may include, for example, the use of a "speedometer" or

changing the color of the cruiser. Without these additions, users will face similar

troubles and suffer from sin_lar frustrations as they attempt to place the Star

Cruiser into orbit.

Remove Star Cruiser From Orbit



This action may only be performed ifthe Star Cruiser is,obviously,in orbit

in some solar system and the user isviewing that system. Subjects usually took

the cruiserout of orbitonly ifone of two conditionswas met. Ifallpossible

information had been collectedin the system, and alltoolshad been recalled,then

the subjectsremoved the cruiserfrom orbitin order to send itto another solar

system or to the Star Base. On the other hand, ifmore information could stillbe

collectedbut there was no additionalstorage space on board the ship,then the

Star Cruiser was taken out of orbitas well. In this case,the cruiserwas returned

directlyto the Star Base.

The number of perceptual cues which would lead the user to perform this

action are minimal. When presented a solar system view where no tools or probes

are deployed and the planets, if there are any, no longer contain any information

as indicated by the pie pieces, then the user should realize that there is no reason

to have the cruiser in orbit. Others cues may also be present which may lead to

the decision to remove the Star Cruiser from orbit. These, however, do so

indirectly since they actually inform the user that another action should be

performed (refer to Dock Star Cruiser at the Star Base). In order to perform this

action though, the user must remove the cruiser from orbit first. As a result,

although the means are slightly different, the results they obtain are similar. In

this case, this is satisfactory since the relationship between the two actions (one

must precede the other) is an easy one for the user to make. The action of

removing the ship from orbit is easily triggered by the cues which currently exist

and, thus, no modifications are necessarily required.

As mentioned before, the user must be viewing the solar system which

contains the orbiting Star Cruiser in order to perform this action. If not, then the

user's inability to successfully remove the cruiser from orbit serves as a cue that

the action cannot be performed. Otherwise, there are no other cues which

indicate this to the user, nor that the user can perform the action. It was noted,

though, that subjects very rarely, if ever, attempted to remove the Star Cruiser

from orbit when it was impossible to do so. In addition, whenever they decided to

perform the action, they were in a situation which permitted the action. Thus, it

appears that whenever the user's strategy calls for removing the cruiser from

orbit, no additional cues are required to show the availability of that action.

Problems do arise, however, when the user does not wish to remove the

cruiser from orbit, but does so accidentally. This is a result of the aforementioned



lack of cues which indicate that this action may be performed. Several attempts

made by the subjects to deploy tools resulted in their accidental removing of the

Star Cruiser from orbit. When deploying a tool, after selecting it from the top of

the screen, the user is required to select the Star Cruiser as it is travelling around

the sun. If the user is unable to track and select the ship properly, then the tool is

unselected. The subjects would not realize this and attempt to select the cruiser

again. If successful at the second attempt, since the tool is no longer selected,

they would actually be placing a thrust on the cruiser. This more than likely

pulled the ship out of orbit at an undesirable time. This error was oRen

experienced during the earlier sessions. Even with more practice, the mistake

was still made, though not as frequently. The subjects learned that they needed to

selectthe toolagain before selectingthe cruiser. Some form of cue should be

present, however, to indicateto the user when a string from the cruiser will

deploy a toolor probe or when itwillact as a thrust. In other words, a perceptual

cue should be implemented which willinform the user of the availabilityof this

action.

Dock Star Cruiser At Star Base

The Star Cruiser can be docked at the Star Base ifitismoving around in the

galaxy and the user isviewing it. The cruisermust be traveling at a slow enough

speed as itpasses the base in order foritto dock.

Subjects shared similar strategiesin deciding when to dock the cruiser at

the Star Base. Any one of three situations would result in the subjects

abandoning their current activities and performing the necessary actions that

would lead to the cruiser's docking. The main reason people docked the cruiser

was when they wished to unload its contents. Some subjects attempted to fill the

cruiser as full of information as a solar system's planets would allow, while

others were satisfied with partial fillings. Another factor which often led to

subjects moving the ship to the Star Base was the time remaining in the session.

If the cruiser had some information on board and time was nearly expired, the

subjects would dock the cruiser as quickly as possible in order to increase their

point total. The third factor which compelled people to perform this action was

the amount of fuel the cruiser had remaining. Lack of fuel would force subjects to

return the cruiser back to the Star Base in order to refuel. Essentially, as long as



the cruiser had enough cargo space and fuel, the subjects were content with

keeping it moving through the galaxy and collecting information from the various

solar systems.

The availability of this action was usually not questioned by the subjects.

Though not often attempted, an inability to maneuver the Star Cruiser while it is

located somewhere other than the current view provides the necessary cue to the

user that the action cannot be performed. Due to the nature of this action though,

this is not often enough. In order to dock the cruiser at the base, the user may

have to, or wish to, perform other actions first. For instance, if the Star Cruiser is

in orbit, the user must take it out of orbit before s/he can dock it at the Star Base.

Therefore, in some cases, the availability of this action depends on that of others

and thus the cues which signify the availability of those other actions become

significant. The subjects did not seem to have trouble with this aspect of the

docking action. They took into account such relationships between actions and

performed them accordingly. This does not infer though, that the difficulties

which existed for the other actions are no longer. The user still runs the risk of

experiencing those troubles resulting from inappropriate cues that were

discussed under each of those individual actions.

From the subjects' performances, there appeared to be several perceptual

cues which led them to perform this action. This is especially true when

considering the cargo space and time factors. The gauges depicting the amount

of cargo space aboard the Star Cruiser were oRen referred to during the collection

of information. As a result, the status of the ship's cargo space was often known.

Thus, if the user deemed it necessary, the Star Cruiser would be returned to the

Star Base. The presence of the timer during the mission provided the subjects

with the necessary information concerning the time remaining. It too was often

checked to determine if the Star Cruiser should be returned to the Star Base, or if

any other actions should even be attempted.

The subjects often ran into difficulty when it came to the third factor. The

Star Cruiser's fuel level was very rarely monitored by the subjects. As a result,

the cruiser would explode, thus ending the mission, much to the surprise of the

user. This happens even though there exists a fuel gauge monitoring the amount

remaining in the cruiser. A possible explanation for this is that while the

cruiser is in orbit, the subject is solely concentrating on the collection of

information. Thus, the only gauges of concern are the cruiser's storage capacity

gauges. In addition, since no thrusts are being applied to the Star Cruiser, no



fuelis consumed and thereforethere is no need to monitor the fuel gauge. Ifthe

cruiseris not in orbit,then the subjectsappeared to be more concerned with

steering the ship through the solar systems and galaxy in order to avoid itfrom

crashing into any suns and/or to make sure sure itisheading back to the Star

Base. Very littleconcern isplaced on the fuel consumption gauge. Thus, ifonly a

small amount ispresent, since the subjectswere likelynot to notice,aRer

performing several thrusts,the ship would explode. This was very noticeable

whenever the subjectshad difficultycontrollingthe speed of the cruiser. Since no

cues existwhich convey thisinformation to the user (referto Place Star Cruiser

Into Orbit),itsometimes took several attempts to get the cruisertravellingat the

proper docking speed. This of course may only involve small thrusts,but they can

be numerous. As a resultagain, the ship willrun out of fuel and explode.

This is a problem resultingfrom the perceptual cues' overspecificationof

the action. Too many cues existindependent of one another. The user isunable to

efficientlymonitor, identify,or notice allcues. Therefore, the same amount of

information that is availableto the user should somehow be restructured. In

doing so though, no additional effort,mentally or physically,should have to be

exerted by the user in order to successfuldetermine when to dock the Star Cruiser

at the Star Base. One possiblemethod for accomplishing thisis to reduce the

amount of independent cues. For example, combining the information presented

by multiple cues into one cue should help the user in determining when to

perform this action. Whatever the method though, care must be taken that the

modification does not result in the action becoming underspecified, mismatched,

or even more overspecifiedthan before.

Release Star Cruiser From Star Base

action was rated by the subjects as the easiest which involves

movement of the Star Cruiser. Not only is it easy to perform the action, applying a

thrust to a stationary object, but determining when to perform the action is simple

as well. Unless the amount of time remaining in the mission is so low that

nothing can be accomplished or all information within the galaxy has been

collected, the subjects would remove the Star Cruiser from the Star Base

immediately after it had docked.



Since the users cannot perform any other actions that affectthe status of

the galaxy while the cruiseris docked at the Star Base, they understand that in

order to continue achieving theirgoal of collectinginformation, they need to pull

the cruiseraway from the base and have ittraveltowards one ofthe solar

systems. This serves as a forcing function which guarantees the users

performing the action ifthey are going to better theirperformance. In a sense

then, the requirement to remove the cruiserfrom the base in order to affectthe

status of the galaxy is enough to inform the users that they should perform this

action. Therefore, no additionalperceptual cues are required.

The only time this actionwould not be availableto the user isifthe current

view isof a solar system. Only when viewing the galaxy isthe user capable of

removing the Star Cruiser from the Star Base. In a view of a solar system

though, the cruiserwould not even be displayed. Thus, the absence of the cruiser

signifiesto the user that a thrust cannot be applied to the ship to move itaway

from the dock. Whenever the user is viewing the galaxy, however, s/he may

easilyapply the thrust and pull the Star Cruiser away from the base. Since itwas

apparent that the subjectsconsistentlyknew about the availabilityof thisaction,

no further perceptual cues are warranted.

Change View To Galaxy / Solar System

Whenever subjects performed this action,itwas to gather information

which would help determine the Star Cruiser's next movement. With the cruiser

in the galaxy, subjectswould selecta view of a solar system to assess the amount

of information availablean itsplanets. Differentsolarsystems would be selected

until the subjects determined that one contained enough information tojustify

sending the cruiser there. The cruiser'snext movement would then be towards

that par_mdar solar system. Ifthe cruiser was present in the solar system, most

always in orbit,the subjectsoRen selectedthe galaxy view in order to determine

which side of the system the cruisershould exit from. The subjectswho

performed this action forthisreason found itnecessary to do so since the thrusts

they applied to the cruisertobreak itout ofitsorbitoften sent itflyingout of the

solar system uncontrollably. Information obtained from viewing the galaxy, such

as the locationofneighboring solarsystems or the locationofthe Star Base, often

helped the subjectsto eitherprevent the cruiserfrom sailinginto another solar



system and crashing into it's sun or find the shortest route for the cruiser to

return to the Star Base or to travel to another solar system. Often these alternate

views are selected while the subject is waiting for the completion of another action

(i.e., tools collecting information, cruiser traveling through galaxy, cruiser

docked at the Star Base).

Though some subjects successfully employed these strategies, some do not.

Even though they were told about the option of different views and how to access

them, some subjects would forget of its existence. This is because no perceptual

cues are present to inform the user of the action's availability, even if the user

remembers it from training. There is nothing about the display which lets the

user know that by selecting a sun in the galaxy view, or the sun in the solar

system view, s/he can observe a different map. Though there are cues which

indicate which solar systems may be viewed (the presence of the pie pieces on the

suns), these still do not inform the user that the action can be performed.

Additionally, cues which assist the user in determining when to perform

this action are lacking. Only as a result of practice and habit does the user

incorporate this action into a strategy. And then again, the multiple views are

only employed if s/he fails to remember the various states of the system. As a

result, this action currently does little to help relieve the memory burden placed

on the user.

There is essentially no perceptual cues which specify this action. The

subjects who did perform it though, generally had an easier time determining

where to send the Star Cruiser. They also seemed more capable of getting the

ship there utilizing the smallest amo_t of effort. Therefore, the action has merit

and the environment should support it. In order to do this, perceptual cues need

to be introduced which will aid the user in determining if and when to perform

this action, as well as whether or not the action can be performed.

Summary

The movement of the Star Cruiser, as controlled by the users, is determined

by a number of factors. These factors include the distance the ship has to travel,

the configuration of solar systems wi_ the galaxy, the cruiser's amount of fuel,

and the time remaining in the mission. They all play a vital role in the

determination of where the Star Cruiser needs to go and how it is going to get



there. All of this information is readily available to the user via the display

interface. In addition,they allserve as cues which contribute to the decision to

perform other actions. Quite often,the user electsto perform an action but

cannot, or willnot, do so until another is performed. Many of the actions are

related through such a hierarchy. For example, a subject may electto remove the

Star Cruiser from orbit. As a result,s/he might firstperform the action of

viewing the galaxy to determine the cruiser'sdestinationand exitpath and then

actual remove the cruiserfrom orbit. Such relationscan be as simple as this,or

they my be more complex. The action of returning information to the Star Base

may involve the user firstdeploying a probe, viewing the solar system containing

that probe, steeringthe cruiserinto that system, obtaining orbit,deploying

collectiontools,recallingthe tools,removing the cruiser from itsorbit (which

itselfmay require multiple steps),steeringitthrough the galaxy, and finally

docking itat the Star Base.

The user must clearlyunderstand these relationsifany acceptable

performance isgoing to be ob_ed. The perceptual cues throughout the

environment play a significantrole in this process. The cues should accomplish

two goals. The firstis that they should always letthe user know when a certain

action may be performed. Secondly, ifan action is unavailable, then cues should

specifyto the user what actionsneed to be performed in order to make the

unavailable one possible. This press should repeat until the user ispresented

with an availableaction that s/he knows willhelp achieve the availabilityof the

originalaction. Whenever breakdowns is thisprocess occur,where the user does

not readilyknow what to do next or ifiteven can be done, then the existing

perceptual cues should be investigated and the determination made about

whether new cues should be used, current cues should be eliminated, or multiple

cues should be combined.

The preceding discussion concerning Star Cruiser's possible actions

attempted to accomplish this. The strategiesof expert subjectswere examined to

determine when a particular action was likelyto be performed. The subjects'

abilitiesto perform these actions were then evaluated. Possible explanations for

the ease or difficultyof each, based on the perceptual guidance supplied within

the Star Cruiser environment, were also offered. As a result,areas of

improvement can now be suggested. These improvements should concentrate on

improving Star Cruiser'senvironment so that, where itfailedbefore,the



perceptual guidance afforded will specify what actions the users wish to do as

well as whether those actions can be performed.

Task Analysis Results: Enhancements

From the ecological task analysis performed on the following actions, certain

factors were discovered that warranted possible enhancements in order to

improve user performance. Listed for each action are those factors along with

suggested enhancements based on perceptual cues and decision aids.

Clmose Star Cruiser's Destination

1) cruiser's amount of fuel
Perceptual Cue Enhancements:

- Fuel gauge will be modified to make fuel level more noticeable.

Decision Aid Enhancement Features:
- The aid will indicate whether the cruiser needs to return to star base in

order to refuel.
- A ranked list of possible destinations for the cruiser will be indicated to

the user (through color coding or messages in a window area) based
partially on whether the cruiser has enough fuel to fly to that
destination from its present location and then fly to the star base.

2) amount of information contained within solar system
Perceptual Cue Enhancements:

Color of sun will indicate amount of information contained within

solar system relative to amount of information contained within
galaxy.

- Use "Ghost Images" on suns in galaxy view to depict amount of
information once present in system (user will then know if cruiser
has previously collected information from that system).

Decision Aid Enhancement Features:

- A ranked list of possible destinations for the cruiser will be indicated to
the user (through color coding or messages in a window area) based
partially on amount of information contained within each solar

system.

3) cruiser's remaining information storage capacity
Perceptual Cue Enhancements:

Gauges indicating cruiser'sstorage capacity willbe altered to
resemble those depicting the amount of information contained on a



planet (pie charts). User can then compare shape of pie piece on
planet to empty space in pie gauges representing storage capacity to
determine if amount of information will fit onto cruiser. (Simpler to
incorporate then polygon-changing display.)

Decision Aid Enhancement Features:
- The aid will indicate whether the cruiser needs to return to star base in

order to unload the information on board the cruiser.

- A ranked list of possible destinations for the cruiser will be indicated to
the user (through color c_ Or messages in a window area) based
partially on whether the cruiser has any remaining capacity for the
type of information available within each solar system.

Collect Infozmation
(Combination of Deploy Collection Tools and Recall Collection Tools)

1) tools allowed to deploy
Perceptual Cue Enhancements:

- Color coding tools selection bar to facilitate determination of which

tools collect what and where they may be deployed to.
- Dim tools when they cannot be deployed

Decision Aid Enhancement Features:
- A ranked list of tools to be deployed will be indicated to the user

(through a change of color of a message) based partially on whether
that tool can be legally deployed in that solar system (for example, if
there are no life sustaining planets in the solar system, no manned
ships may be deployed).

- After a tool has been selected by the user, the aid can then indicate a
ranked list of planets to deploy the tool to (through a change of color or
a message).

- The aid will indicate whether the user is trying to deploy an
inappropriate tool to an inappropriate planet (for example, a manned
ship to a planet which does not support life, or a manned ship to a
planet without any information).

2) amount of information contained within solar system
Perceptual Cue Enhancements:

- Color of sun will indicate amount of information contained within

solar system relative to amount of information contained within
galaxy.
Use "Ghost Images" on suns in galaxy view to depict amount of
information once present in system (user will then know if cruiser
has previously collected information from that system).

Decision Aid Enhancement Features:
- If more information is contained within that solar system than can be

collected by the cruiser, the aid will use this fact when indicating a



ranked list of tools to deploy, a ranked list of planets to deploy the tools
to, and when indicating a ranked list of tools to recall.

3) cruiser's information storage capacity
Perceptual Cue Enhancements:

- Gauges indicating cruiser's storage capacity will be altered to
resemble those depicting the amount of information contained on a
planet.

Decision Aid Enhancement Features:

- If deploying a robot ship to a planet in a solar system could result in the
tool collecting more information than can be stored on the cruiser (due
to its automatically flying to other planets), this fact will be considered
when the aid indicates a ranked list of tools to be deployed, a ranked list
of tools to recall, and a list of planets to deploy tools to.

- The aid will consider the remaining capacity it has to store information
when indicating a ranked list of tools to recall from planets.

- The aid will indicate whether the user is trying to recall a tool which
would overload the star cruiser.

4) amount of information collected by tool
Perceptual Cue Enhancements-

- "Ghost image" of collated information so user knows how much tool
will transfer to cruiser.

Decision Aid Enhancement Features:

- If deploying a robot ship to a planet in a solar system could result in the
tool collecting more information than can be stored on the cruiser (due
to its automatically flying to other planets), this fact will be considered
when the aid indicates a _ed list of tools to be deployed, a ranked list
of tools to recall, and a list of planets to deploy tools to.

- The aid will consider the amount of information collected by each tools
(in relation to the remaining capacity on board the cruiser) when
indicating a ranked_st of tools to recall from planets.

- The aid will indicate whether the user is trying to recall a tool which
would overload the star cruiser.

5) types of tools deployed to each planet
Perceptual Cue Enhancements:

- Locate deployed tools around planet, one tool type in each corner.
(Ease of implementation questionable.)

Decision Aid Enhancement Features:
- When indicating a ranked list of tools to deploy and a list of planets to

deploy the tools to, the aid will consider what tools have already been
deployed to that p_cular planet.

- Because the tools may only be recalled in a specified order (see Star
Cruiser specifications), the aid will consider this order when
indicating a ranked list of tools to recall from a solar system.



Plm_ Star Cruiser Into Oddt

1) location of ninth orbital
Perceptual Cue Enhancements:

- Highlight ninth orbital.

Decision Aid Enhancement Features:
- Hints could be suggested to the user in a window, such as "Deploy

probe to find ninth orbital" or "Outer planet is in the seventh orbital."
OR
- Advice could be provided to the user indicating which direction to move

the star cruiser to obtain orbit (such as placing arrows by the star
cruiser, indicating the direction).

2) cruiser's speed
Perceptual Cue Enhancements:

- Change color of cruiser when it has obtained orbiting speed (or
slower).

Decision Aid Enhancement Features:
- Hints could be suggested to the user in a window, such as "You have

reached orbital speed."
OR

- Advice could be provided to the user indicating whether or not the
cruiser needs to slow down or has reached an acceptable speed (for
example, from the previous se_on the arrows placed by the star
cruiser could turn different colors, depending upon the current speed
of the cruiser).

Controlling Star Cruisers Movements and Deploy Probe

1) function of string pull upon cruiser
Perceptual Cue Enhancements:

- Change color of cruiser to indicate type of action string pull will have
on cruiser.

Decision Aid Enhancement Features:.
- The aid could indicate to the user which type of action a string pull will

have on the cruiser.

Remove Star Cruiser From Odflt

1) amount of thrust required for cruiser to break orbit
Perceptual Cue Enhancements:

- Flash cruiser when thrust to be applied to cruiser (as indicated by
string pull) is enough for it to break orbit. (Questionable as to whether
or not this is really needed.)



Decision Aid Enhancement Features:
- No decision aid enhancement features are proposed here.

Dock Star Cnds_ At Star Base

1) cruiser's amount of fuel
Perceptual Cue Enhancements:

(See _ Star Cndser's Destination)

Decision Aid Enhancement Features:
- (See Choose Star Cruiser's Destination)

2) amount of information stored on cruiser / cruiser's remaining storage capacity
Perceptual Cue Enhancements:

(See Choose Star _'s _tion)

Decision Aid Enhancement Features:
- (See Choose Star Cruisex's _tination)

3) availability of information in othersolar systems
Perceptual Cue Enhancements:

(See Choose Star Cruiser's Destination)

Decision Aid Enhancement Features:
(See Clmoev Star Cruiser's Destination)

4) speed of cruiser
Perceptual Cue Enhancements:

- Change color of cruiser when it has obtained docking speed (or
slower).

Decision Aid Enhancement Features:
- When docking at star base, the aid can indicate whether the cruiser

has obtained docking speed or needs to slow down (through a change
in color or a message).

Chang Vtm 

I) may only perform ifcruiserhas previously visitedsolar system or ifa probe has
been deployed to it

Perceptual Cue Enhancements:
No perceptual cue enhancements proposed due to complexity of changes
that would be required.

Decision Aid Enhancement Features:
No decision aid enhancement features are proposed here.



RemlIPmbe

No proposed enhancements since no common factors between perceptual cue and
decision aid enhancements.

_ Star Cruiser From Star Base

No enhancements required. None were deemed necessary.

Experimentation

At this point,the perceptually enhanced version of the display has been

constructed, and building the decision aiding system is in progress. An

experiment is currently being performed to compare learning and performance

using the originaldisplay with learning and perfomance using the perceptually

enhanced display. Eight subjectsare being run in each display group for a total

of 16 sessions (aRer two one-halfhour training sessions).

Initialresults,shown on following pages, are encouraging. On average,

subjects in the enhanced display condition perform at a level35% higher than the

subjects using the original display.
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SUMMARY

Computer-based graphical displays are increasingly used as aids to

human decision-makers. However, effective use of this new technology

requires an understanding of perceptual components of decision skill. As a

step toward meeting this need, two sets of models of skilled human decision-

making using dynamic, graphically displayed information are presented.

The first model set uses the backpropagation artificial neural

network architecture to describe how skilled decision-makers might

become increasingly attuned to highly diagnostic features of a graphically

displayed decision task. The proposed model is consistent with recent

psychological research suggesting that decision-makers develop a "trained

eye" through experience. The model set consists of three models which use

different input feature representations.

The second model set utilizes genetic-based machine learning

techniques to also describe how decision-makers might rely on perceptual

components of decision skill. The model set includes a pure genetic

algorithm and a revised classifier system. The model sets are similar in

that both accept inputs with only dimensional information from the

graphical display. The model sets are different mainly in the method used

to search the solution space. Whereas the neural networks operate using

gradient descent search, genetic-based techniques work by random search.
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Results comparing the performance of artificial neural networks and

genetic learning models with the performance of human subjects in a

laboratory experiment suggest that both model sets provide promising, but

different, approaches for the study of decision skill. In particular, the

results of one neural network model suggest that relational input features

are important cues used by subjects.
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CHAPTER I

INTRODUCTION

Current theories of human decision-making reflect a history of

retreats from the strong assumptions made by traditional utility theory (yon

Neumann and Morgenstern, 1947). In utility theory, the worth, or utility, of

one's choice is the criteria for decision-making. One who is consistent with

the theory would seek to maximize the expected value (i.e. the weighted

probabilities of the alternative outcomes of a choice) of one's utility.

Although utility theory may be adequate for simplistic scenarios, real-world

situations proved too complex to be modeled. A classic example is the

Prisoners' Dilemma (Davis, 1985). Two suspects, accused as partners for a

crime, are told separately by police that enough evidence exists to warrant

X years of jail sentence each. The police further offer the carrot of parole to

the suspect who implicates the other. The implicated suspect would have to

serve 4X years in prison. However, if both suspects confess, both will have

to serve 3X years in prison. The suspects are faced with two options: to deny

all charges; or to condemn the partner. The optimal choice for either

prisoner is to condemn the other. However, if each condemn the other, the

police will be able to implicate both. Therefore, the satisfactory and most

stable, though not optimal, strategy is for both to deny all charges. If utility



theory was implemented to solve the Prisoners' Dilemma, each prisoner

would always want to maximize his/her utility. Doing so, however, would

minimize the utility of both suspects.

To counter utility theory, Simon (1959) proposed, in the context of

economics, that the human decision process is oriented to satisfice(to

derive a satisfactorysolution),rather than to optimize a solution.

Characteristics of satisficingbehavior are described as follows:

Models of satisficingbehavior are richer than models of
maximizing behavior, because they treat not only of

equilibrium but of the method of reaching itas well.
Psychological studies of the formation and change of
aspiration levelssupport propositions of the followingkinds.
(a)When performance fallsshort of the levelof aspiration,
search behavior (particularlysearch for new alternativesof
action)isinduced. (b)At the same time, the levelof aspiration
begins to adjust itselfdownward untilgoals reach levelsthat

are practicallyattainable. (c)Ifthe two mechanisms just
listedoperate too slowly to adapt aspirations to performance,
emotional behavior--apathy or aggression, for example--will
replace rationaladaptive behavior. (Simon, 1959, p. 263)

In a complex environment, such as the economic world, the decision-

maker is faced with numerous opportunities for action. Thus, information

processing limitations constrain the decision-maker to adopt satisfactory

solutions. Therefore, models of human decision-making which follow the

utilitytheoreticapproach may actually overestimate the abilityof humans

to process information.

Studies of decision-making in complex tasks confirms Simon's

satisficingprinciple. Lesgold et al.(1988) analyzed X-ray diagnosis by

radiologistsof varying expertise. They found that diagnoses by expert

radiologistswere supported by highly refined automatic recognition
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capabilities.Novice radiologists,who tended to use a probabilistic

approach, were significantlyless accurate in their diagnoses. Chase and

Simon (1973) examined the abilityof chess players of varying skillsto

generate moves. They found that chess masters were able to extract

information from existing board configurations to construct "right"moves

for further consideration. Although novice chess players were able to

generate the same number of move possibilitiesas the chess masters, the

moves themselves were much less desirable. Thus, in both studies,skilled

human decision-making in a complex task did not conform to utilitytheory

prescriptions. In fact,signs of systematic searches through the entire

solution space were only evident in novice behavior.

Perceptual Mee.hRrtt, n'nmof Decision-m_lrlng

In both the radiologistand the chess player studies,skilleddecision-

making processes were thought to rely heavily on perceptually-oriented

mechanisms that processed displayed information. Lesgold et al.(1988)

demonstrated the perceptual processing of experts by theirabilityto quickly

generate a pertinent schema to aid diagnosis. Chase and Simon (1973)

noted that itisno mistake oflanguage fora chess master to say that he

"sees" the right move. Thus, perceptual components appear to be a major

part of expert decision-making in a complex task. To compensate for cases

where the perceptual mechanisms cannot uniquely qualify an action,

higher cognitiveprocessing may also be required. In lightof the

importance of perceptual mechanisms in skilleddecision-making, three

perceptually-oriented modeling approaches are described. The three
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approaches are: recognition-primed decision-making in naturalistic

environments as proposed by Klein (1989);the research of Hammond and

his colleagues on analytical-intuitivecognition (Hammond, Hamm,

Grassia, and Pearson, 1987); and the research of Kirlik and his colleagues

on perceptual aspects of skilleddecision-making in dynamic environments

(Kirlik,Miller,and Jagacinski, 1992; Kirlik,Markert, and Shively, 1991).

Recognition-primed Decisions Paradigm

A model of recognitional decision-making in natural settings has

been suggested by Klein (1989). The model, recognition-primed decisions

(RPD), was formulated through observations and interviews with

professionals ranging from fireground commanders to design engineers.

The model proposed four major features of decision-making. The first

feature involves recognizing an instance as typical. Once an instance has

been recognized, the second feature--situational assessment--is activated.

Situational assessment involves an understanding of the situation as the

decision-maker draws on prior experiences to identify courses of action.

Situational assessment concerns not only action goals,but also

expectancies to confirm or deny that the correctcourse has been taken. The

third feature,serialevaluation, sequentially assesses options of action until

a satisfactoryone isfound. This feature ismost similar to the principleof

satisficing.The last feature,progressive deepening, involves mentally

pre-playing scenarios to imagine how an option willbe executed. Chess
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master strategiesare examples of progressive deepening. Chess masters

tend to chose one move, consider a countermove, and progressively deepen

the process (Klein,1989).

Underlying the RPD model is the assumption that the

decision-maker is skilled.Novice decision-makers tend to deliberate

concurrently,instead of serially,over available options. The drawback to

the RPD model is the lack of formalization. As of now, no successful

mathematical implementations of the RPD model have been made.

IntuitiveDecision.making Paradigm

Hammond et al.(1987) described an "intuitive"mode of cognition

that, at times, out-performs an analyticalcognitivemode. In the intuitive

mode of decision-making, cues in the environment used by the human are

perceptually assessed. The significanceof the assessments then

determines an appropriate situationaljudgment. Hammond et ah

characterized intuitivedecision-making as having the following properties:

low cognitive control;rapid rateofdata processing; low conscious

awareness; and normally distributed errors. Subjects using the intuitive

mode of decision-making showed high confidence in the answer and low

confidence in the method of deriving the answer.

Through experiments, Hammond et al.found that both task and

interfacefeatures could influence the type of cognition (analyticalor

intuitive)used by the subject to perform a task. Thus, a continuum,

ranging from purely analyticalto purely intuitive,was devised to account

forthe possible strategiesfo_ performing a task.
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Unlike RPD and perceptual decision-making paradigms, intuitive

decision-making involves a "natural" mode of perceptually-oriented

processing. A natural mode denotes that the processing did not depend on

training at the task.

Perceptual Decision-making Paradigm

Kirlik,Markert, and Shively (1990) suggested that the human

perceptual system serves a dual role in decision-making performance.

First,the perceptual system functions as a mediator between the context of

a current decision process and stored knowledge. Second, the perceptual

system can directlyinitiateactivitythrough the development of a "trained

eye." Kirlik (1992) characterized a perceptual model of skilleddecision-

making in a dynamic task. His model was based on a hierarchically

structured set of perceptual mechanisms that defined a set of decision

options. The mechanisms also defined a distributionof values over the

options to indicate the avai_bility ofeach.

Kirlik,Miller,and Jagacinski (1992) conducted empirical studies to

identify the perceptual m_anisms used by human subjects while

interacting with a computer simulation of an aviation micro-world.

The micro-world consisted_f fivefriendly aircrafts,a computer-generated

terrain,enemy craft,and cargo. Friendly aircraft"crews" were chosen

from a university population. The objectivewas to pilota scout aircraft

through the terrain and dispatch the other four aircraftsto engage enemy

targets or load and unload cargo. A task analysis of the human-

environment system led to the design of a process model capable of
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mimicking subject behavior. The process model categorized displayed

situations in terms of the degree to which various actions were appropriate.

The categorization was mainly accomplished by perceptual components.

As the micro-world was a dynamic environment, immediate perceptual

classification was necessary. The effectiveness of the process model was

shown by the similarity of actions suggested by the model's perceptual

mechanisms and those taken by the crews.

The approach of investigatingthe perceptual mode of decision-

making has been the most formal of the three paradigms described (RPD,

Intuitive,and Perceptual). Thus, the perceptual approach seems best

suited to be modelled through mathematical techniques.

Graphical Considerations for Experimental Design

The design of graphical display for a task to analyze perceptual

decision-making processes must be carefullyconsidered. Barnett and

Wickens (1988) proposed the principleof compatibilityof proximity to aid

display design. The principleasserts that multiple channels of information

requiring mental integration should be physically integrated as well. In

support of the principle,they showed that integration of information using

rectangles was significantlybetter than using bar graphs. Even when the

task required focussing attention on isolatedattributes,subject

performance using the integrated rectangle display did not suffer. Barnett

and Wickens also noted that an important element in the principleis the



emergent feature. An emergent feature is a property of the configuration

of multiple dimensions of an object that does not exist when the dimensions

are specified independent of one another.

Sanderson, Flach, Buttigieg, and Casey (1989) also stressed the

importance of emergent features in aiding display design. The emergent

feature principle was used to predict the effectiveness of visual displays in

supporting a variety of monitoring tasks. Emergent properties of a visual

stimulus should identify invariants in the environment. An invariant is a

permanent physical property of an object or system that remains constant

across all superficial transformations unless an abnormality is present

(Sanderson et. al., 1989).

Modeling Goals and Objectives

The purpose of this research was to construct mathematical models

of the perceptual decision-making paradigm using artificial neural

network and genetic learning methodologies. To analyze human

perceptual decision-making processes, subjects' performances on a

dynamic decision-making task were recorded. The mathematical models

were then used to simulate subject performance on the same task. By

analyzing the performance of the mathematical models, certain diagnostic

features could be inferred. In particular, relational input features were

found to significantly improve the performance of an artificial neural

network model. To further examine the neural network model, a

"skeletonization" technique was used to identify how the trained model had

become attuned to various input features.
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Chapter 2 describes the dynamic graphical task used to investigate

skilled decision-making. It also illustrates a method to generate a profile of

errors, called "error signature diagnosis", in order to identify perceptual

heuristics from behavioral data. Chapter 3 describes artificial neural

network models of subject performance in the graphical decision task. A

brief introduction to artificial neural networks is given first. Next, a neural

network model is presented in terms of the graphical decision task and

components of perceptual decision-making. A specifications section follows

to discuss implementation of the neural network in terms of the graphical

decision task and perceptual decision-making components. Chapter 4

describes a genetic algorithm and a genetic-based machine learning model

of subject performance in the graphical decision task. Traditional genetic

algorithms are first introduced and explained. Revisions of the traditional

structure to accommodate the graphical decision task are also described.

In addition,a genetic-based machine learning model is described in terms

of the graphical task and components of perceptual decision-making.

Chapter 6 discusses computer program design issues. Chapter 7 presents

the analysis of resultsgenerated by the artificialneural network, genetic

algorithm, and genetic-based machine learning models. The

skeletonizationtechnique is also described there. Chapter 8 concludes the

thesis with a discussion of significantfindings and implications for further

research.
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CHAPTER II

TASK AND EXPERIMENTS

Lalmratory Task

In 1980, Tulga and Sheridan constructed a scheduling task to explain

that human decision-making was based on principles of utility theory.

Kirlik, Markert, and Shively wanted to explore ramifications of applying

simpler perceptual models to the same scheduling task. The task was

modified to promote perceptual mechanisms of skilled decision-making.

The modified task will be referred as the revised Tulga task (R2*r). A

descriptionof the task is as follows:

The display [see figure 2-1] shows four horizontal lines.
At the start of each tri_ur rectangles of variable height and
width appear at the left side of the screen and begin to move to
the right. Each rectangle represents a task that must be
processed before it reaches its due-date (the end of the line). In
the present version of the task, subjects processed a rectangle
by pressing a numbered key. The keys were vertically
arranged on a modified keyboard to ensure spatial
compatibility with the display. In general, the subject's task is
to determine an appropriate order in which to process the four
rectangles and to enter the order as rapidly as possible.

Only one rectangle can be processed at a time. If the
subject enters the keys 1, 2, 3, 4, in that order, rectangle 1 will
begin processing and the other rectangles will travel some

variable distance across the screen during the time in which
rectangle 1 is being processed. After the first rectangle has
completed processing, the next rectangle will begin
processing, and so on, until all the rectangles have
disappeared from the screen. The subject cannot interrupt the

ongoing processing of a rectangle, and may make keypresses
at any time aRer the initiation of the trial, although a

performance penalty is incurred if the subject delays between
keypresses. As an inducement to rapidly determine an
ordering of the rectangles, any time delay incurred between
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entering successive keys is reflectedin a delay of the same
duration between the end of the firstrectangle'sprocessing
and the start of the second rectangle'sprocessing. This

feature of the task was included specificallyto promote the
development of rapid,possibly perceptual decision processes.

During intervalsin which a rectangle is being

processed, or in which processing is delayed, the remaining
rectangles move across the screen at variable speeds. The
speed with which a rectangle moves has been constrained to
vary linearlywith itsarea. Larger (area)rectangles move
proportionately slower than smaller rectangles.

The optimal ordering is a function of a number of
factors. First,the nominal value of a rectangle isindicated by

its height. In calculating the actual payoff earned by
processing a rectangle, though, the nominal value is divided by
the distance the rectangle has traveled when it has completed

processing. Therefore, a higher proportion of a rectangle's
nominal value is earned the shorter the distance it has

traveled. The overall payoff for a single trial is the sum of the
payoffs earned for the four rectangles. (Kirlik, Markert, and

Shively, 1990, p. 519)

READY Score__

Figure 2-1. Revised Tulga-task Display
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The optimal payoff score is calculated as follows:

Given the 24 possible orderings for the four rectangles,

optimal_order_.payoff = max totalpayoffs(i) for i=1,..,24

where the total payoff score is the summation of partial payoff scores of

each rectangle selected at the jth order

totalpayoffs(i) = _: partial_payoff(j) for j=l,..,4

and

partial_payoff[j) = H(j)2 * W(j)/F_ W(k) for k=l,..j {2.1}

where H is the height and W is the width of RTT rectangles.

Subjects receive a score at the end of each trial, indicating the percent of

optimal performance that was achieved. The subject payoff score, which

range [0, 100], is calculated as follows:

payoff = _: actual_payoff(l) / maximumpayoff for 1=1,...4.

where actual payoff is the score at each rectangle selected at lth order by the

subject, and

actual..payoff(1) = H(1)2 * W(1) * C1 / {2.2}

(F_ [C2 * W(m)] + Z [C3 * delay_time(m)])

for re=l,..,1. C1, C2, and C3 are constants and delay_time(m) is the time

between subject order selections.

Experiment

Four subjects (1, 2, 3, 4) from the student population of Georgia Tech

participated in the experiment. Students received monetary compensation

for each hour of participation. The participants were encouraged to

correctly order the rectangles so as to achieve the highest possible payoff

12



score. The individual with the highest average payoff score at the end of the

experiment was given a monetary bonus. The subjects were told that the

rectangle height represented the nominal payoff value. They were also told

to order the rectangles as quickly as possible.

Each experimental session consisted of a series of 80 trials. At the

beginning of each trial, a 5 sec. pause was given. Following the pause, a

READY message, as shown figure 2-1, was shown for 3 sec. The rectangles

then appeared and started moving to the right at varying speeds (according

to area). After all the rectangles were processed, the payoff score was

displayed for 2 sec. Following the payoff score display, the 5 sec. pause was

repeated and the process continued until the completion of 40 trials. At the

end of 40 trials, the subjects were instructed to take a short break, after

which the remaining 40 trials were completed. Each session typically

lasted one hour.

Two Macintosh Irs were used to run the experiment. The keypad

was modified to allow rectangle ordering. As shown in figure 2-1, the "1"

key represented the top rectangle, the "2" key corresponded to the second

from the top, the "3" key meant the third from the top, and the "4" key

represented the bottom rectangle. A set of 16 rectangles were used to

generate different combinations of four rectangles to appear on the

computer screen. A graphical representation of the 16 rectangles in

In(height) X In(width) space is shown is figure 2-2.
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Figure 2-2. Rectangles Used in the Experiment

The subjects completed a total of five sessions over a five day period.

Each day's session was the same for all four subjects. Day 1 was used as a

practice session. Therefore, only data from days 2 to 5 were used for

modeling purposes. Data captured from the sessions include reaction time

(delay time between keypresses), order of rectangles, and payoff score.

Task Analysis

From the description of how optimal payoff scores were calculated, a

pair-wise rectangle ordering rule can be generated. Given two rectangles a

and b, rectangle a should be processed prior to rectangle b if (from {2.1}):

Ha 2 + Hb 2 [ Wb / (V_'a+Wb) ] _ Hb 2 + Ha 2 [ Wa / (Wa+Wb) ]

Isolating features of each rectangle, the inequality then becomes:

Ha 2 / Wa _ Hb 2 / Wb {2.3}

To graphically represent the optimal pair-wise ordering rule {2.3}, make Ha

and Wa dependent variables (H and W respectively) and Hb and Wb
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independent variables. Furthermore, simplify {2.3}to an equality to depict a

lineinstead of a region. Thus, the rule becomes:

H2/W = Hb2/Wb

Assuming W > 0 and Wb > 0, take logarithms of both sides:

ln( H2 / W ) = ln( Hb 2 / Wb )

We get:

21nH-lnW = 21nHb-lnWb

Letting y = In H yl " In Hb

x = In W xl = In Wb

and substituting,we get:

(Y - Yl) = 112 (x - Xl)

which is the equation of a line in Cartesian coordinates. Thus, the pair-

wise ordering rule is represented by the slope of the line in In(height) X

In(width) space. Given a slope m, and rewriting the equation of a line to a

more familiar form, we get:

y =mx + b where b = -mxb + Yb

In figure 2-2,the line through rectangle 7 shows itsordinal position among

alltho rectangles on the grid. Thus, each rectangle satisfying:

y> 1/2x+b

willbe pair-wise ordered prior to rectangle 7. Similarly,each rectangle

satisfying:

y< 1/2x +b

willbe pair-wise ordered afterrectangle 7.
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Kirlik, Markert, and Shively (1990) devised a method of calculating

"error signatures" to identify possible perceptual heuristics that could be

used to pair-wise order the rectangles. The error signature uses the line

representing the optimal heuristic {2.3} to compare with lines generated by

other rules. To calculate the error signature, bound the deviations of the

non-op'timal rule from the optimal rule. Consider m as the slope of the

heuristic to be compared, one set of constraints is as follows:

y > 1/2 x + b y >mx + c where b and c are constants.

The second set of constraints is similar:

y< 112 x + b y < mx + c

The intersection created by the two sets of constraints represents the error

region. For instance, given the rule:

H/W > Hb/Wb /2.4]

which has a slope of one, the intersectioncreated by the optimal rule and

the non-optimal rule contains rectangle 15. Thus, ifa subject consistently

mis-orders the pair of rectangles 15 and 7, the error signature profilecan

show that he/she is using rule {2.4}.Therefore, the error profilecan show if

subject behavior was consistent with a particularrule.
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CHAPTER III

ARTIFICIAL NEURAL NETWORK MODEL OF

PERCEPTUAL DECISION-MAKING

Introduction to ArtificialNeural Networks

To better understand components of decision skill, a model of human

decision-making using dynamic, graphically displayed information was

constructed. Using the RTT as the graphical task, the model sought to

simulate performance as indicated by the data of the four human subjects.

The model utilized the artificial neural network (ANN) paradigm. ANNs

are biologically-inspired systems that process information via dense

interconnections of simple computational units. ANNs will be introduced

in the present section with respect to the decision-making paradigm. A

more technical explanation will be included later. ANNs consist of two

primary elements: computational units (or nodes) and interconnections (or

weights). Figure 3-1 shows an ANN with two layers of weights and three

layers of nodes. The nodes receive input signals from other nodes via the

weights. Based on the strength of incoming signals, the receiving node, in

turn, generate an output signal. The strength of the output signal is

determined by an activation function residing on the receiving node. Given

a target criterion, an ANN can learn by using training rules to change

weights.

17



OutputLayerNodes

OutputLayerWeights

Hidden Layer Nodes

Hidden Layer Weights

InputLayerNodes

Figure 3-1. Artificial Neural Network Architecture

Artificial Neural Network Characteristics

Parallel-processing ANNs have several benefits over traditional yon

Neumann sequential computers (Lippmann, 1987). Due to massive

interconnections among processing nodes, ANNs typically provide a

greater degree of robustness or fault tolerance. In addition, most ANN

have the ability to adapt and learn over time. Moreover, ANNs make

weaker assumptions regarding the solution space. ANNs "Don't 'execute

programs' as much as they 'behave' given a specific input ... They 'react,'

'self-organize', 'learn,' and 'forget'" (Caudill, 1987, p. 48). Thus, ANNs

make promising models of human performance for certain types of tasks.

There are basically four types of ANN's (Fausett, 1992): an

associative memory, which is trained to associate a set of input vectors with

a corresponding set of output vectors; a pattern classifier, which classifies
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an input vector as belonging or not belonging to a category; a self-organizer,

which groups similar input vectors without external supervision; and a

constrained optimizer, which solves constrained optimization problems.

Neural Network Models of Cognition

Three issues must be addressed in order to construct a neural

network model of human cognitive processes. The first issue concerns the

structure of the network. Rumelhart, Hinton, and McCleUand (1986)

described three types of structure: bottom-up, top-down, and interactive.

The fundamental characteristic of the bottom-up structure is that lower

level elements can only communicate with upper level ones. In the top-

down structure, on the other hand, only upper level elements can

communicate with lower level ones. With interactive structure, two-way

communication is possible between levels. The second issue pertains to the

function of neural network system components. Rurnelhart, Smolensky,

McClelland, and Hinton (1986) described a neural network which

simulated a person's mental model of a situation as having two sub-

networks with two distinct functions. One sub-network interprets the

inputs from the environment, while the other sub-network produces

expected outcomes based on the interpretations. The third issue focuses on

the types of input representation used by the network. Humans have three

essential abilities that allow them to come to logical conclusions without

being logical (Rumelhart, Smolensky, McClelland, and Hinton, 1986, p. 44):

they are good at pattern matching; they are good modelers of the world; and

they are good at manipulating the environment around them. Therefore, to
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effectivelysimulate the task environment, the network designer must

realizethat artifacts--man-made physical representations created to

simplify problem solving--exist,and are used extensively as perceptual

inputs to the human cognitivesystem.

A brief survey of three existingpsychologicalneural network models

is presented. The firstmodel simulates human skillacquisitionby using

several connected ANNs. The second is a configural network model of

human classificationand recognition learning using a one-layer ANN.

The third is a decision-making model utilizingthree connected ANNs.

The firstmodel, proposed by Schneider and Detweiler (1988),was able

to simulate skillacquisitionin a word recognitiontask. The model consists

of three levels--microlevel,macrolevel, and system-level. The microlevel

represents a network of neuron-like units that process input information

from the environment. The inputs to the microlevel are represented as

binary strings,where 1 or 0 denote the presence or absence of a feature.

Microlevel units are organized into functional modules. Modules

categorize sensory (i.e.auditory, visual,motor) and language (i.e.

semantic, speech, context)information available to the network, and can be

effectedby the network. The macrolevel, then, represents interactions

among the modules. Macrolevel modules are further organized into

regions of sensory-language interaction. Finally,the interactions are

interpreted at a system-leveh At the system-level,a central control

structure receives reports from all regions and regulates the transmission

of instructionsback to the modules.
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Schneider and Detweiler were able to simulate phases of human skill

acquisitionthrough the model. Model behavior in the initialtrials

resembled controlled processing where performance was slow and

effortful.After a period of training,the model was able to perform using

"automatic" processing (i.e.directassociativeretrievalof output patterns

from input patterns).

The second model, proposed by Gluck, Bower, and Hee (1989), was

able to account forlearning results from several animal and human

learning literatures.The model consistsof a one-layer pattern classifier

ANN with "configural"input features. A configural model encodes pair-

wise conjunctions of stimulus features as unique elements. Non-linearly

separable problems can be overcome by explicitlycoding "higher-order"

elements through conjunctions of elementary features. The inputs are

coded in binary where I or 0 denotes the presence or absence of a configural

feature.

Gluck et al.tested the configuralmodel on three tasks. The firsttask

involved solving non-linearly-separableclassifications.The second task

entailed judging testpatterns as "old"training instances or new instances

not experienced before. The third task consisted of classifying"noisy" data

(i.e.previously trained instances with characteristicsadded or missing)

into categories. In alltasks, the performance of the configural model was

found to be similarto that of the human subject. Gluck et al.attributed the
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success of the configuralmodel to an implicitexponential decay

relationshipbetween input cues. The same relationshipexistsbetween

stimulus similarityand psychological distance.

The thirdmodel, proposed by Leven and Elsberry (1990),attempted to

simulate human skill-acquisitionand problem solving using a system of

ANNs. The model asserted that humans learn and analyze through three

hierarchical methods. First,humans perform in a calculative,rational

manner through the use of context-freerules. The firstmethod represents

the least skilledphase of human learning, and is modeled as an associative

memory ANN. Second, humans use a structured, analytic mode of

learning via Bayesian-processing. The second method depicts a training

phase, and is represented as a pattern classifierANN. Third, humans

process context-sensitiveinformation through "intuitive"guidance. The

third method reflectsa skilledphase, and is represented as a self-

organizing ANN.

Performance of Leven and Elsberry's model resembled

characteristicsof Simon's satisficingprinciple. As performance of the

ANN models fellbelow a levelof aspiration,rules were reconstructed in the

data base to change search behavior. However, ifthe performance

indicated that the goal cannot be attained,model behavior became radical

and unpredictable.

Psychological neural network models 'mentioned in this section have

been successful in simulating performance fortheir respective tasks. For

the RTT, however, the same models would need to be drasticallyaltered t_o
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simulate human performance. Thus, a different strategy was needed to

model human decision-making in the RTT. The strategy chosen was the

perceptual decision-making paradigm. As perceptual decision-making

relies on a pattern recognitional component, a pattern classifier ANN was

selected as the model for the RTT.

Constraints on Artifi_d Neural Network Model of Decision-making

Kirlik and Rothrock (1991) suggested several constraints for the

ANN model of the RTT. First, input features must be determined by close

examination of perceptually available displayed information. In the RTT,

the physical dimensions of the rectangles are assumed to be the most

pertinent perceptual information. Second, artifactual input features

(dimensions not intentionally designed to communicate meaningful

information) must be considered. Shape and area, for instance, should not

be neglected. Third, input feature salience, as opposed to diagnosticity,

should not be neglected. For the ANN model of the RTT, feature salience is

assumed to also be the feature diagnosticity. Last, the attended feature set,

which may be a small subset of all information available in the

environment, should be extracted. Although some input features can be

ignored by the ANN, additional features cannot be added. Therefore, the

selection process must be thorough.

Backpropagation Algorithm

The pattern classifier ANN chosen to model the RTT used the

backpropagation algorithm and a three-layer architecture. The

Generalized Delta Rule (Rumelhart, Hinton, and Williams, 1986), or
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backpropagation algorithm, contains two phases: feedforward of input

signals and backpropagation of errors. Given the same architecture

shown in figure 3-1, the feedforward phase consists of the following: each

input layer node sends its input signal, multiplied by connecting hidden

layer weights, forward to hidden layer nodes; each hidden layer node then

sum allinputs and applies itsactivationfunction to determine itsoutput

signal;the output signals,multiplied by connecting output layer weights,

becomes input signalsto output layer nodes; finally,each output layer node

sums allinputs and applies itsactivationfunction to determine the outputs

of the network. The backpropagation phase consistsof the following: the

outputs of the network from the feedforward phase are compared with a set

of target nodes; the errors (target-output)are propagated back through the

network via the learning rule;finally,the hidden and output layer weights

are updated based on the propagated errors.

Backpropagation Model of Decim'on-Making in RTT Context

In terms of the RTT, the input signals to the backpropagation

network were representations of the rectangles. The outputs of the network

represented an ordering of the rectangles. To factor out motor skill effects,

the reaction times of the network were made to match subject reaction

times for the same session. In addition, the network was trained on the

same trials as the subjects.

The backpropagation algorithm contains some strengths which

make it useful for modeling perceptual decision making. First, cue

attunement can be thought of as network learning. As the network learns
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information through its weights certain input nodes become more

diagnostic than others. Second, once high diagnosticityis achieved, i.e.the

network is trained,the feedforward component alone can be used to

simulate a mode of decision-making where perception directlyspecifies

action.

There are weaknesses to the modeling paradigm as well. First,an

underlying assumption of the backpropagation algorithm is that all

relevant input features can be identifiedby the modeler. Thus, the network

cannot add supplementary cues from outside the current representation.

Second, the backpropagation network tends to require thousands of training

epochs (cyclesof input signals).The subject,however, was trained only

once on the same set ofinput signals. Third, the target representation of

optimal orders isnot availablein the RTT. The only feedback received by

the subject was the payoff score. Fourth, training rules (search techniques)

used by the backpropagation algorithm, such as gradient descent,

sometimes cannot overcome local minima problems. Whereas the human

subject could selecta differentdiagnostic cue from the display,the ANN is

trapped in a fixed search scheme.

Artificial Neural Network Specifications

The present section describes the implementation of the

backpropagation algorithm in the context of the RTT. A primary modeling

objective was consistency and generality. Three different network

representations were considered. To objectively evaluate each network's

ability to learn and adapt, tl_e following set of criteria was used: the initial
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weights, created by a pseudo-random number generator, were the same for

all three ANNs; the number of hidden layer nodes was n/2 where n was the

number of input layer nodes; the learning rule was the Least Mean Square

(LMS) rule; the activation function was the logistic sigmoid function for

inputs ranging from -1 to 1; values for input and output layer nodes were

bound between 0 and 1; and the threshold for the error term was set at

0.165.

To facilitaterobust learning,weights were created to range from -1

to 1. The number of hidden layer nodes was arbitrarilychosen. Caudill

(1988) noted that too many hidden nodes willencourage the network to

memorize patterns, while too few will drasticallyextend the number of

training iterations.The LMS rule essentiallyreduces the difference(error)

between the target output and the actual output generated by the network

through gradient descent. The error of each pattern E is:

1 k 2

=-- Z (dm'Y m)E 2 m-O

where k isthe number of output layer nodes, dm isthe target node, and Ym

is the output layer node. Fausett (1992) suggested using the bipolar form of

the logisticsigmoid function f(x),and the corresponding derivativef'(x)for

binary input data where:

f(x) = 2 -1
1 + exp(-x) and f" ( x ) = 0.5 [ 1 - f2 ( x )]

Figure 3-2 shows a simplified version of the feedforward phase of the

backpropagation algorithm for the RTT. For the actual RTT model, the
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number of input and hidden layer nodes was determined by the input

representation, and the number of output nodes remained four. The input

layer nodes (0 and 1) fed forward signals from outside the network. The

signals were multiplied by weights and summed as $2,3 at the hidden layer

nodes (2 and 3). The activation function, which was the same for all nodes,

then calculated the output of the hidden layer nodes Y2,3. These outputs,

multiplied by weights, were then summed as S4,s at the output layer nodes

(4 and 5). Finally, the activation function at the output layer nodes

calculates the output (i.e. ordering of the rectangles) of the network Y4,s.

Y4=f_( St )

y_ =f_( S_ )

S_=_W_y_

Y4 Y5

Y5=/s ( Ss )

$5 =Z2WsmY_

Y3 - f,.'.'.3( 83 )

S 3 = Z W3m Ymm=O

Figure 3-2. Feedforward Phase of Backpropagation Algorithm

Figure 3-3 shows a simplified version of the backward propagation

phase of the backpropagation algorithm for the RTT. _ represents the

learning rate, which decreases with time. Correction terms (24,5) on the
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output layer nodes were calculated based on the error of the target (c14,5)and

output (Y4,5)nodes. The terms were then propagated back the network so

that hidden layer correction terms (_2,s) could be calculated. Finally, the

weight corrections (AW) were used to update weights for the current input

signals. The new weights were calculated as:

(new) (old)

W_ =Wij +AW..

d 4 d s

34 = ( d4- Y4) f4"($4 ) _ _ 3s = ( ds- ys) fs'(Ss)

hW42 = g" 34 Y2 AW$2 " _ 3s Y2

AW_= _3 4yz AW53= ]/3 sy3

5 5

aW20,- g 3_Yo _W30,- g 33Y0

AW21= g 32y 1 AW31 = ]I 33y 1

Figure 3-3. Backward Propagation Phase of Backpropagation Algorithm

Input Representations

Three input representations for the RTT are shown in figure 3-4. The

dimensional representationcontained scaled (from 0 to 1) real number

values of the height (H), width (W), area (H* W), shape (H ÷ W), and the
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optimal heuristic(H2 + W) (Kirlik,Markert, and Shively, 1990) of each

rectangle. In terms of the signature error discussed in Chapter II,each

dimension (which can also be considered a heuristicfor the subject)can be

represented as a linein In(height)X In(width) space. The slope of the

height lineis 0, the width lineis undefined, the area line is-1,the shape

lineis 1, and the optimal heuristicis 1/2. There were 20 input layer nodes

for the dimensional representation. The same dimensions were considered

in the relationalrepresentation. However, the value ofthe relationalnodes

were binary, where 1 represented that the rectangle had the greatest

dimensional value of allthe rectangles in the present input set. There were

20 input layer nodes forthe relationalrepresentation. The third

representation applied the strategy of the relationalrepresentation to all

possible pairs of rectangles. Thus, the rectangles with the greater

dimensional value in each pair were assigned a 1. There were 30 input

layer nodes for the pair-wise relationalrepresentation. This representation

was similar to the configural representation used by Gluck, Bower and

Hee.
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Dimensional ANN Input Representation (Real-valued)

O
H

0 0 0 0 ... ... ...
W H*W H÷W H^2÷W

] [_11 Jl

Rectangle1
Rectangle2 Rectangle3 Rectangle4

Relational ANN Input Representation (Binary)

0 0 0 0 0
Max(H)Max(W) Max(H * W) Max(H ÷ W) Max(H^2 * W)

]I

OO0

J !

Rectangle1
Rectangle2 Rectangle3 Rectangle 4

Pair-wiseRelationalANN InputRepresentation(Binary)
(iftoprectangleislessthanlowerrectangle,thenodeisturnedon)

000000
_1 _1 _1 _2 _2 _3

V8 V| V8 V$ V8 V8

_2 _3 _4 _3 _4 _4

OgO 000 O00 IJOg

I! I1_11 I

H W H*W H÷W

I I

HA2 + W

Figure3-4. Art_cialNeuralNetwork InputRepresentations
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RTr Modifications to the Backpropagation Algorithm

Figure 3-5 shows the flow of the backpropagation model of the RTT.

Some modifications were made to the feedforward of data and back

propagation of error phases. From the input layer nodes to the output layer

nodes, conventional feedforward processing took place. The output layer

nodes, which were real-valued, represented strength. To convert the

strength to a rectangle order, the output layer nodes were first assigned

rectangle identifiers. The first output node, for instance, would be assigned

the top rectangle (in relation to other rectangles as it appears on the screen)

in the RTT. The second output node would be assigned the second rectangle

from the top, and so on. Thus, if the strength of the third output layer node

was the strongest, the third rectangle from the top would be selected first in

the order.

Once the rectangle order was established, the RTT payoff score was

calculated. The computation of the payoff score also yielded the optimal

order for the present rectangle set. Using the optimal order, or subject

order if' training on subject data is desired, the values of the target nodes

were set by reversing the procedure of converting strength to order.

Converting the cardinal order to a strength value, the first was assigned a

1.000000 value, the second was assigned a 0.666666, the third was assigned

a 0.333333, and the fourth was assigned a 0.000000. The target values were

set to provide maximum separation within the bounds of [0,1].

Once the target node values were set, conventional back propagation

of errors occurred and the weights were adjusted. After the weights were
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updated, the next input signal pattern repeated the process. Training for

the backpropagation model continued until either a predetermined number

of epochs (1 epoch represents a cycle of all input signal patterns) had been

reached, or learning was complete.

Learning was deemed complete if a certain threshold criteria was

reached. The error (i.e. target-output) was compared to a fixed threshold of

0.165. If a significant amount of error surpassed the threshold, learning

was not complete. Thus, the range of allowable value for nodes

corresponding to rectangle strength was as follows:

0.000000 -> 0.165000 for the rectangle ordered last

0.168333 -> 0.498333 for the rectangle ordered third

0.501666 -> 0.831666 for the rectangle ordered second

0.835000 -> 1.000000 for the rectangle ordered first

The threshold criteria was designed to constrain outputs to numerical

boundaries. If the error was within the allowable range, the ordering

would be optimal.
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Summary

This chapter attempted a comprehensive treatment of ANN-inspired

human decision-making models. An brief introduction to ANNs was first

given to acquaint the reader with the paradigm. A literature search of

existing ANN models of cognition revealed the need for a perceptually-

oriented decision-making model. Under constraints of the perceptual

decision-making methodology, a rationale supporting a backpropagation

model of the RTT was developed. Finally, details describing the various

adaptations of the backpropagation model to the R'I_ were discussed.

34



CHAPTER IV

GENETIC MODELS OF SKILLED DECISION-MAKING

Introduction to Genetic Algorithms

Genetic algorithms (GAs) are search algorithms based on the theory

of biologicalevolution and principlesof natural genetics. In computational

terms, Grefenstette (1990) suggested that GAs are distinguished from other

search techniques by the following features: A population of structures that

can be interpreted as candidate solutionsto the given problem; the

competitive selectionof structures for reproduction, based on each

structure'sfitnessas a solutionto the given problem; and idealizedgenetic

operators that recombine the selectedstructures to create new structures

for further testing.The power of GAs liesin the abilityto adapt to

combinatorially explosive search spaces about which littlecan be known a

priori(De Jong, 1990).

GAs have several benefitsover traditionaloptimization and search

techniques (Goldberg, 1989). GAs make no assumptions regarding the

problem space. The "blind"search is solelydriven by use of objective

function information. Also, instead of searching a single point in the

solution space, GAs search in parallelfrom a population of points. In

addition,GAs work with the coding of a parameter set,not the parameters

themselves.
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GA models are able to overcome some drawbacks of ANN models.

First,GA models are able to code a parameter set ofinput features to create

differentcombinations, whereas the ANN moders input features are fixed.

Second, the ANN model's localminima problem is not encountered by GA

models because of probabilisticsearch. The finaldifferenceconcerns the

RTT in particular. The GA model's objectivefunction is a scalar measure

of the fitnessof a GA structure;similar to the payoff score function in the

RTT. The criterionfor the backpropagation algorithm, however, is a vector

measure of correctness in the ordering of rectangles.

Genetic Algorithm Characteristics

The unit of analysis in a GA model is the gene. Just as human genes

carry bitsof biologicaldata, GA genes carry bitsof data about an objectof

analysis. The objectcould be anything from a solution foran undefined

function to a component for a computer program. For humans, the genes

combine so that bitsof data become a stream ofinformation known as the

chromosome. The GA analogy to the chromosome is the string. A

collectionof chromosomes, or strings,is known as a population. In most

"GA models, the number of strings within a population remains constant.

A GA model can operate on genetic stringsusing three operators:

reproduction, crossover,and mutation. A sample model is shown in figure

4-I. Gijrepresent the jth genetic data contained in the ith string. The

initialstring population is homogeneous because no interactionbetween

strings has taken place. The firstGA operator, reproduction, can replicate

an existing string based on the string's fitness. A string is deemed "fit" if it
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evaluates to a high objectivefunction value. In the sample model, the

second string was reproduced. The second GA operator, crossover,can

exchange information between strings. Crossover randomly selectsa site

at which two strings are "spliced."Shown as phase II in the sample

model, the firstand second stringswere splicedbetween genes 4 and 5.

Through splicing,the variation within the population increases. The third

GA operator, mutation, randomly changes genetic data in a string.

Sometimes, reproduction and crossover may indiscriminantly destroy

useful genetic material. Therefore, the mutation operator is needed to

protect against irrecoverable loss by bringing new information into the

population. Mutation is shown as phase III in the sample model. G2,s in

the third string was randomly replaced with M. The new population

represents the next generation of string.
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Io_,_o_,4o_,_io_,_1o_._io,,_lo,,_l
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Io,.,Io_,_1o_,_1o,,.Io,,4o,.01o.I
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I°_,,Io_1o_,4o_,,Io_,4o_,4o.I

Phase I: Reproduction
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Mate IO,,Jo,,_lo,,_1o_,,1/Io.t o%4o.!
Pair G G Phase II: Crossover

IO-%,1o.I o_,_1o_,,,!o_,_1o_,,Io.I
iiil||lll||||||i||lii|ili||ii||||i|||l||lilll||llllllllllllllllllllil

I°,,,Io_,_1o_,_1o,.,Io%4o%,1o.I
1%.1o_._1o.I o_..io.._1o_..Io.I Phase III: Mutation

IO_.,Io%4o_._1o_,,,I Io%,1o.I
I'
M

I | | ||| |1| | | | | | |i | | |i |i | i I I I il II II II III ii I I I | I III II il I I I I I I I llil I I I I I HI II II i II lli_

I° _,,Io.l o,._1o._,,I0_,_1o_,01o.I
New Population

i°_,_1o.l o%_1oA M1o_,,io.I
Figure 4-1. Sample GenerationofGenetic Algorithm Model
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Genetic Algorithm Specifications

An example using Goldberg's algorithms (1989) is shown in figure 4-2 to

illustrate the details of how a GA model operates. Strings in the current

generation are maintained in a population database. De Jong (1990)

illustrated that binary-valued genes promote effective search processes in a

GA model. Thus, the strings are represented as l's and O's. Furthermore,

Grefenstette (1990) suggested a population size of between 50 to 100 strings to

insure satisfactory performance. Therefore, for the sake of consistency, all

genetic models developed for the RTT had a population size of 50. For the

sake of simplicity, the example has a population of only four strings.

The GA model first evaluates the strings to fitness values. Figure 4-3

illustrates how the fitness value is calculated. A string, say X, is first

decomposed to components. The components are then collectively evaluated

by an objective function, f. The output of the function is the fitness value of

string X. A probability count, based on the fitness value, is then calculated

for each string.
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Figure4-2. Sample GeneticAlgorithm
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Genetic Algorithm Operator

ii!iiiiiiii:.i_.! _ ._.._._i_iiiii_iiiiiiiiiiiiii_ii_iiiiii_iii_iiii!iiiiiiiiiii!iiii_iiiiiii_i_i_i_i_.ii_i_

Figure 4-3. Fitness Value Evaluation Process

The probability count is then mapped onto a "roulette wheel" (figure 4-4).

#2

String #1

Figure 4-4. Roulette: Wheel Based on Example

For N strings in the population, the roulette wheel is spun N times. The

number of times a particular string is chosen by the wheel, denoted as the

random count, indicates the number of copies of itself that will exist in the

next generation. The entire process from calculating fitness values to

generating random counts is known as reproduction.

Following reproduction, the crossover operator is applied to the

strings. Two conditions must_be satisfied in order to perform crossover.

fitness value
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First,pairs of mates must be chosen randomly from the population.

Second, a crossover sitemust be randomly selectedfor the mating pair.

Once the sitesare selected(shown in figure4-2 as between genes 5 and 6 for

the firstpair and between genes 1 and 2 forthe second pair),allthe gene

values of the string pairs afterthe crossover siteare switched.

Following crossover,the strings are then manipulated by the

mutation operator. The mutation operator randomly (with small

probability)altersthe value of a gene. In the example, string 2 has been

chosen to be mutated at genes 6 and 7. De Jong (1990) suggested that the

mutation probabilityshould be less than 0.001. The resultant population,

after undergoing reproduction, crossover, and mutation, represents the

next generation of strings.

GA Models of Cognition

Goldberg (1989) offereda review of GA models in the socialsciences.

However, the models reviewed were normative in nature. A normative

model prescribes what an individual should do as opposed to what he/she

actually does. The papers reviewed included a model of prehistorichunter-

gatherer behavior (Reynolds, 1979) and a model to solvean iterated

prisoner'sdilemma problem (Axelrod, 1985). Grefenstette (1990) also

provided a briefreview of GA applications. The topicshe described were:

numerical function optimization; optimization of computer simulated

processes; combinatorial optimization; image processing; game playing;

and multiobjectivepattern classification.In lightof the literature

reviewed, the trend of most GA-related research appears to be oriented
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towards optimization. Nevertheless, functional aspects of a GA model--

such as avoidance of local minima, and new rule generation--can be

applied to simulate satisficing behavior as well.

GA Model of Perceptual Declsion-making

To overcome the search restrictions (trap of local minima) and

representation limitations (inability to create new features) of the ANN

model of the R_I ', a GA model was constructed. Although slight variations

of the genetic operators were needed to create a model for the RTT, the

general function of the model remained the same as the one illustrated in

figure 4-2. The first modification involved the representation of the strings,

which were interpreted as rules. Each string represented the operation:

Ha operator Wb

where H was the height of the rectangle, W was the width of the rectangle,

a and b were the exponents on the height and width, and operator was one

of the arithmetic operators (+,-,x,÷). In terms of the objective function

evaluation process shown in figure 4-3, a, b, and operator were all string

components. The interpretations of the rules, i.e. f( a b operator ), dictated

an ordering of the four displayed rectangles in the R_I'r. The string itself

was represented as:

sa bb operator

Thus, for example,

10 01 111

represented the operation

H2 + Wl
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where HS ÷ Wl isthe criteriondetermined by the string I0 01 III to order

input rectangles. Note that a,b, and operator were allrepresented in

binary. Although some representations of the stringswere not

perceptually available,such as H2 + W or 1 + W2, others, such as shape

(H + W)or area (H x W)were.

A second modification involved the methods of crossover and

mutation. Figure 4-2 showed crossover occurring for allgenes following

the crossover site.Sanderson et al.(1989) showed that humans are attuned

to invariants within a perceptual environment. Therefore, to effectively

simulate human performance, the GA model should also seek and

maintain invariant cues. In Goldberg's algorithm, allgenetic information

after the crossover sitewere exchanged between mates, and allinformation

afterthe mutation sitewas altered. To do so with the GA model of the R_vr,

however, would riskbreaking the integrityofa, b, and operator

components. For example, ifthe crossover sitebetween two mates was

selectedto be between genes I and 2,only half of the a component

information would be exchanged. Thus, possible invariant cues, such as a,

b, and operator components, would be lostdue to random siteselection.To

maintain component integrity,crossover and mutation siteswere

preselected.These siteswere between aa and bb genes, and between bb and

operator genes.

Introduction to Genetic.based Machine Learning Methodology

A major drawback of the GA model isitsinstability.Given that the

number of strings in a population remains constant, each generation
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contains a differentset of strings. For the RTT, each rectangle pattern

represented a new generation. Thus, ifa string scored poorly on one

displayed rectangle set,but was the best performer overall,itcould have

been eliminated from the population because of the poor score. To prevent

such occurrences, an alternativemodel was considered. That model,

calledthe genetic-based machine learning (GBML) model (Goldberg, 1989),

is a rule-base system using genetic algorithm search techniques.

A GBML follows the form:

if<condition> then <action>

Incoming messages from the environment are detected by "classifier"

strings. These strings,using the same representation as GA strings,

classifyinputs by competition with one another. Classificationis

accomplished, i.e.<condition> is met, when a string has won possession of

the input message. The <action> part ofthe rule-baseis determined by the

winning string. As in the GA example, the GBML model also contains a

string population. Each string contains a strength value. The strength of a

string,unlike the fitnessvalue, is an internal evaluation of itsworth.

Unlike the GA model, where a poor fitnessvalue could eliminate a string

from the population, the GBML model has a "second line of defense." The

internal evaluation keeps a running count of the performance of a string

through a number of generations. After a predetermined number of

generations, the weaker strings are replaced with stronger ones.

Therefore, a gradual replacement based on strength of the string

population occurs.
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A GBML model consistsof two major components: the

apportionment of credit(AOC) system, and GA. The AOC system uses a

bucket brigade algorithm (BBA) (Goldberg, 1989). The BBA contains two

main components: an auction and a clearinghouse. The BBA can be

viewed as an economic system where information is traded from the

manufacturer (inputs from the environment) to consumers (the strings).

In the auction,strings Which qualify (those that match bidding

preconditions)bid a portion of their strength for a message. The winning

string,the one with the highest bid,then pays itsbid to the previous owner

of the message, and becomes the new owner. The bidding continues until

no remaining strings are qualifiedto bid. At this point, the string which

holds the message is evaluated by the clearinghouse. Based on the quality

of the message, the string is either rewarded or punished by increasing or

decreasing its strength. Each auction-clearinghouse cycle represents a

generation.

The GBML model executes the GA component aftera predetermined

number of generations of the BBA component. Thus, unless the GA

component is executed afterevery generation of the BBA, the GBML model

should be more stable than the GA model.

GBML Models of Cognition

A survey of existingGBML models shows that although some model

characteristicsshow similarityto human cognitive processes, the models

are normative in nature. Spiessens (1990) described a GBML model which

was able to predict objectivefunction information based on an internal
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world model. The model was used to solve a state space search problem.

The description of the model is similar to some psychological descriptions of

mental models (Richards, 1990). Riolo (1989) described the emergence of

default hierarchies in some GBML models. The models were classifier

systems used to solve a categorization task. The hierarchies seems similar

to hierarchical l_hases of skill, ranging from controlled behavior to

automatic behavior (Schneider and Detweiler, 1988). In spite of the

similarities, the trend of GBML research, as in GA research, tends toward

optimization. Nevertheless, characteristics of the GBM:L model behavior--

such as population stability and sub-optimal, but satisficing, performance--

can be applied to model human decision-making performance.

GBML Model of Perceptual Decim'on-maldng

Although slight modifications to the BBA were needed in order to

construct a GBML model of perceptual decision-making, the basic concept

of the BBA remains the same. In the BBA, each input message from the

environment is important to a particular set of strings (those which are

qualified to bid). The input representation for the rectangles of the RTT,

however, does not reveal preferences for rule strings in the population.

Therefore, to compensate for the discrepancy, four adaptations were made

in the GBML model:

1. The input message was regarded as a dummy token representing

dimensions of each displayed rectangle set. Unlike the BBA, the

message in the GBML model for the RTT had no meaning to specific

strings.
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2. Each message was traded only once, and all strings were qualified to

bid on all messages.

3. The winning string of each auction paid its bid to the cIearinghouse.

Once the string was evaluated to a RTr payoff score the

clearinghouse rewarded or punished the string based on the a payoff

score threshold.

4. The GA component was executed after all displayed rectangle

patterns were presented to the BBA component.

An overview of the model is provided in figure 4-5.

A hypothetical example iteration of the AOC portion of the GBML

model for the RTT is shown in figure 4-6. The inputs into the system,

regarded as tokens, are auctioned to the highest bidding rule (rule 3). Once

the rule wins, it pays the bid from its strength. The rule is then allowed to

be evaluated to a payoff score of, say 70.0. Since the score is lower than the

threshold, the rule is punished for poor performance by subtracting the

amount of bid from its strength. At the end of the iteration, the strength of

rule 3 decreases to 64.0.

The modified BBA (MBBA) is repeated for each RTT rectangle

pattern. Following the MBBA, genetic operations are applied to the strings.

The strength value of the stringsnow becomes the fitnessvalue for the GA.

At this point,the fitnessvalue represents an aggregate measure of the

worth of each string over alldisplayed rectangle patterns. The GA model

for the GBML isthe same as the one used solelyfoxthe RTT.
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Comparison of GA and GBML Methodologies

Schuurmans, Chai, and Shu (1987) observed that a classifier system,

such as GBML, appears to "lack the killer instinct." That, although the

system often reaches near-optimal solutions, global maxima are

infrequently reached. In the case of human decision-making, however,

flexibility and "non-optimal" methods might actually make better models.

De Jong stated:

The current popular view is that the classifier approach will
prove to be most useful in on-line, real-time environments in
which radical changes in behavior cannot be tolerated;
whereas the [GA] approach will be useful with off-line
environments in which more leisurely exploration and more
radical behavioral changes are acceptable.

(De Jong, 1990, p. 628)

By modeling perceptual decision-making using both the pure GA and the

GBML methodologies, perhaps some inferences concerning human

decision-making could be made. Maybe the radical behavior of the pure GA

model is indicative of human performance. Or, perhaps the conservative

approach of the GBMLmodel is more akin to human performance.
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CHAPTER V

COMPUTER IMPLEMENTATION

Computer Program Design

Before the mathematical models could be coded into computer

programs, an overview of the flow ofinformation in the perceptual decision-

making paradigm was needed. Once an overview was provided, the

specificationsof the backpropagation algorithm (discussed in Chapter III),

the GA (discussed in Chapter IV),and the GBML (alsodiscussed in

Chapter IV) models could be programmed so that a correspondence

between the models and the decision-making paradigm became apparent.

Figure 5-1 shows an information flow diagram for the perceptual

paradigm. The diagram contains two types of processes: purely perceptual

(initialstages ofprocessing linked by a solidline)and training (stages of

processing following the dotted line). Purely perceptual processing occurs

when perception of cues in an environment directlyevokes an action.

When purely perceptual processing is not possible,training willbe required

to search for more diagnostic cues. Training involves determining the

significanceof feedback, and based on that significance,adjusting the

amount of attention given to differentenvironmental cues.
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Figure 5-1. Information Flow in the
Perceptual Decision-making Paradigm

A computer implementation of the perceptual paradigm using an

ANN model is shown as an information flow diagram in figure 5-2. The

forward data path of the ANN model represents purely perceptual

processing. Input representations and fixed subject reaction times are first

processed by the input layer and passed forward to hidden and output

layers via the weights. The strengths of the output layer nodes are then

converted to an ordering of displayed rectangles. A payoff score is then

calculated using the ordering. The feedback data path of the ANN model

represents training. The ordering of displayed rectangles is compared to a

target order. Errors from the comparison are propagated back through the

ANN model and are used to update existing weights.
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Figure 5-2. ANN Model of the

Perceptual Decision-making Paradigm

A program of the perceptual paradigm using a GA model is depicted

as an information flow diagram in figure 5-3. As in the ANN program, the

forward data path represents purely perceptual processing. Input

representations and fixed subject reaction times are first detected and

stored into a GA database. Each string in the database is then translated in

a rule, and the rule is activated to generate an ordering of displayed

rectangles. A payoff score is then calculated using the ordering. Unlike

the ANN program, which calculates one payoff score per displayed

rectangle pattern, the GA program calculates 50 payoff scores (one for each

of the 50 rules in the population). The feedback data path of the GA
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represents training in the perceptual paradigm. Rule strings registering

higher payoff scores are reproduced to replace weaker strings. Strings are

then coupled into 25 pairs by the crossover component. After the exchange

of information occurs within string pairs, strings are selected, at random,

to be mutated.

GA -> Forward Data Path -> Purely Perceptual Processin_

DetectDisplayed_

Rectangle |

Information J

fActivateRule _ (Calculate1[ Stringin | _ l Payoff

_, Population J _ Score

GA -> Feedback Data Path -> Trainine

IcEXe_te _ (Execute _ ( Execute l
Mut  on/ 4--- /Crossoveri _ lReproduction

Jomponentfl _Component) _ Component

Figure 5-3. GA Model of the
Perceptual Decision-making Paradigm

A computer implementation of the perceptual paradigm using a

GBML model is shown as an information flow diagram in figure 5-4. The

GBML model uses the same forward data path as the GA model. Unlike

training for the perceptual paradigm, where each displayed rectangle

pattern is sequentiallytrained,training for the GBML model resemble a

"batch" mode of processing. The processes shown within the shaded region

in figure5-4 represent the apportionment of credit(AOC) system. All

displayed rectangle patterns are firstprocessed by the AOC. As rule
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strings bid for the displayed rectangles, an internal value system tracks the

worth of the strings based on the goodness of payoff scores. However, no

training (modifications to the rule strings) occurs in the AOC system. The

reproduction, crossover, and mutation components, as described in the GA

model, actually modify the rule strings. Thus, since the GA components

are not executed until af_er AOC processes, the rule strings are essentially

modified in terms of feedback from processing a batch of displayed

rectangle patterns.

GBML -> Forward Data Path -> Purely Perceptual Processin e

IDetect Displayed 1

Rectangle /
Information ,}

(Activate Rulel fCalculate 1[ St ng in i [ Payoff
_, Population J _ Score

GB_L -> Trainin_

Execute 1
-'_ ] Reproduction --_

_, Component

I Execute "_

Crossover |

Component_

IC Execute

Mutation |

omponentJ

Figure 5-4. GBML Model of the
Perceptual Decision-making Paradigm
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Artificial Neural Network Program Description

Using the ANN model flow diagram in figure 5-2, an object-oriented

design was constructed. A pseudo-code description of the ANN program is

given in Appendix 1. Figure 5-5 illustrates the encapsulation structure.

Program
Driver )

RTT
• Network Construction

Backpropagation
Network:

• Feedforward

• Backpropagation

I ANNTools I

Figure 5-5. Artificial Neural Network Program Structure

The program driver controls the flow of the ANN program. The R2*r

module provides the method to construct feedforward and backpropagation

networks. The module also includes an initialization procedure for the

program. The Backpropagation Network module, a subclass of the RTT

module, contains components of a backpropagation network. Also included

in the module are components of a network using the skeletonization

procedure. Components in the Backpropagation Network module represent

operations on a particular layer of nodes. Encapsulated within the

Backpropagation Network module, the ANN Tools module provides
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elemental components of a network. Components in the ANN Tools module

provides the method to construct a node and a weight.

Genetic Program Description

Since the GA model can be considered as a part of the GBML model,

the two models were implemented in one program. Using the GA and

GBML model flow diagrams in figures5-3 and 5-4,an object-oriented

program was constructed. The pseudo-code of the program is shown in

Appendix 2. Figure 5-6 shows the programming structure.

r

Apportionment ofCredit:
• Auction

• Clearinghouse

r

I Genetic 1Tools

Genetic

Algorithm:
• Reproduction

• Crossover
• Mutation

Genetic

Tools

J

Figure 5-6. Genetic Program Structure

The program driver controlsthe flow of the program. Ifthe GA model is

selected,only reproduction, crossover,and mutation components are

executed. However, ifthe GBML model is selected,the AOC would firstbe

executed for allinput displayed rectangle patterns. Then, the GA module
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would be processed. Both the GA and GBML modules encapsulate the

Genetic Tools module. The tao.lsmodulepmvid_e$ the means to construct

rule strings and input displayed rectangle representations.

_ Computer Program Options

Tables 5-1 and 5-2 provide a nomenclature forthe differentvariations

of the programs. The variations were needed to show the effectivenessof

the ANN, GA, and GBML models to perform optimally,and to simulate

subject performance. There were three areas of variability:input

representation, subject time data, and mode of operation.

For the ANN program, the dimensional input representation

contained 20 real-valued input nodes reflectingthe height, width, area,

shape, and height2 + width dimensions of each displayed rectangle set (see

figure4-4). The relationalrepresentation contained 20 binary-valued input

nodes representing the rectangles in each displayed set with the largest

dimensional values. The pair-wise relationalrepresentation contained 30

binary-valued input nodes sh_ng _e palr,_si_,comparisons of

dimensional values _ __es in eacIa'di_yed set. To test the

effectivenessof the_"_NN _edel, diff'erentmodes d" operation were

necessary. Training on the optimal order (in which the target node

configuration represented the optimal order) could provide a cursory look at

the abilityof the model to.learn.Ifthe model could not be trained in this

mode, further attempts to train on subject orders willbe fruitless.Training

on the subject order (in which the target node configuration represented the

subject'sorder) provided a measure of model effectivenessto simulate
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ANN Models

Model

 NN_X....k
ANN_B

ANN_C

_,NN_D X

_NN_E

ANN_F

ANN_G X

A_NN_H

_.NN_I

A.NN_J

_NN_K

A_NN_L

ANN_M

ANN_N

A.NN_O

_NN_P

:NN_R_:

Input Time Mode of
Representation Data Operation

X.

X X

X X

X

X X

X X

X

X

X

-'" "I

_kNN_T.. X-
m

ANN_U X

A.NN_V X

ANN_W X

ANN_X X

ANN_Y X

ANN_Z X

ANN_AA X

X

X X

X X

X X

X X

X X

X ....... _-;_ "

,_._ i_ X _ _
m |H

-r

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

CgiO;-_k".L PA_3E IS

OF POOR QUALITY
Table 5-1. Nomenclature forANN Models



GA Models

Model

GA A

GA_B

GAC

GA_D

GA_E

GAF

GA_G

GAH

GA_I

GA_J

GA_K

GAL

Input Time Mode of
Representation Data Operation

, .qJ .qJ

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

GBML Models GBML_A X X X

GBML_B X X X

GBML_C X X X

GBML_D X X X

Table 5-2. NQmenclature for GA and GBML Models $U
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bject performance. Once trained, an ANN model can be switched to

prediction mode to predict outcomes for novel input representations.

For the GA and GBML models, the input representation contained

the height and width dimensions of each displayed rectangle pattern. For

both genetic models, training on optimal order (in which the RTT payoff

score served as the learning criteria) provided a glance at the capabilities of

the models. Once the models showed that learning was possible, training

was switched to subject order. Since the learning criteria for both genetic

models was a scalar objective function value, a translation function was

used to convert the subject erder to a fitness measure. The prediction mode

of operation for b0ti_._ m_. la i '' " '' " "t[_9__tnng translations to

predict payoff outcomes for in'p : eprehntatt& 

For the ANN, GA, and GBML models, variations in reaction times

were assigned across different input representations and modes of

operation to account for variability between the four subjects.



CHAPTER VI

DATA ANALYSIS

Selectionof Crimrlon

To determine the adequacy of the ANN, GA, and GBML models to

simulate human performance, a standard of measurement was needed.

Since the RTT payoff score can readilybe interpreted,itwas firsttested as

the metric. To sample the performance of the ANN models, three models

(shown in table 5-1 as ANN_A, ANN_B, and ANN_C) were trained for 1

epoch on 320 displayed rectangle patterns. To maintain consistency,one

subject'sreaction time (Subject 1)was used forallthree models. Figure 6-1

shows Subject l'spayoff score profilefor 320 patterns (representing sessions

on days 2-5).Figure 6-2,6-3,and 6-4 show payoff profilesgenerated by ANN

models.
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Observation of figures 6-1 to 6-4 revealed a learning curve for all

payoff score profiles. Initial scores, which ranged between 50 and 70,

improved to between 70 and 90. The learning curve appeared to indicate an

improvement in the ability to order the rectangles as the subject or model

gained experience. However, recall that equation {2.2} showed that reaction

time (delay time) contributed to the payoff score calculation. Subject l's

reaction time profile, shown in figure 6-5, indicates a decrease in reaction

time as the practice patterns increased. Thus, since both the ordering of

the rectangles and the reaction time affect the payoff score, an accurate

assessment of model performance could not depend on the payoff score

alone.

To illustrate the problem, consider the effects of reaction times given

that the rectangles are optimally ordered for each trial of a session versus

the same reaction times given that the rectangles are worst ordered

(opposite optimal order) for the same session. Using Subject 1 reaction

times, the optimal ordered case generates an average payoff score of 78.42

for 320 trials while the worst ordered case produces an average payoff score

of 56.95. Recall that the payoffscores can range between 0 and 100. For

models using Subject 1 reaction times, however, the payoff mean is further

restrictedbetween 56.95 and 78.42. Because each subject'sreaction time

profileis different,the range forpayoff means is also different.Thus, the

meaning of error (the differencebetween a target score and a model

generated score)is relativeto each subject'sreaction time profile.
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To successfully determine model effectiveness across subjects,

therefore, a different metric was required. The metric needed to be

independent of subjects. Such a metric was found in the offset, or error, of

a generated order from a target order. For instance, the generated order:

4 3 1 2

and the target order:

3 4 1 2

creates an offset of two.

The offset metric represents one way of measuring model

performance. Some loss of information, however, is possible through its

use. For instance, the difference of the orders:

4 3 1 2 and 3 4 1 2

represent a slight spatial error--neighboring rectangles are misordered.

Whereas the difference of the orders:

4 1 2 3 and 1 4 2 3

show a much larger spatial error. Nevertheless, the offset metric was

chosen because it provided the simplest measure of model performance.

ANN Model Analysis

Prior to modeling subject performance in the RTT, the ANN models

must first show the ability to learn the task. Using Subject I reaction times

as a testbed, models ANN_A, ANN_B, and ANN_C were trained on 240

rectangle patterns (days 2-4) for 20000 epochs using random initial weights.

Note that although the amount of training was greater for the model as

opposed to the subject, the objective of this research was not to generate
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process models. The trained weights were then used by models ANN_D,

ANN_E, and ANN_F to predict outcomes for displayed rectangle patterns

on the finalsession (day 5). To testthe erects of trained versus untrained

weights, models ANN_D, ANN_E, and ANN_F also used the random

initialweights to predictoutcomes forday 5 displayed rectangle patterns.

The mean scores for outcomes of models ANN_D to ANN_F are shown in

table 6-1. Since the analysis was done across input representations instead

of subject reaction times, the payoff scorewas used as the standard of

comparison.

Representation

Subject Pair-wise

Dimensional Relational Relational

Model: ANN_D

TrainedWeights:

Mean Payoff=76.31

UntrainedWeights:

Mean Payoff-69.24

Model:ANNE

TrainedWeights:

Mean Payoff=76.11

UntrainedWeights:

Mean Payoff=69.25

Model:ANN_F

TrainedWeights:

Mean Payoff=76.26

UntrainedWeights:

Mean Payoff=67.80

Table 6-1.ArtificialNeuralNetworkPayoffResults
after20000TrainingEpochson OptimalOrder

An analysis of variance (ANOVA) table was constructed to show the

effectsof training in models ANN_D, ANN_E, and ANN_F. Table 6-2

shows a two-way ANOVAwith Training (trained or untrained weights) as

one effectand Representation (dimensional, relational,and pair-wise
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relational) as the other effect. The ANOVA model is as follows:

Payo_jk - _ + Trainingi + Representationj +

(Training*Representation)ij + errorijk

for i-1,2; j=1,2,3; and k=l,...,80.

where _ is the population mean of the Payoff and

(Training*Representation) is the interaction effect of training and input

representation. The analysis found the training effect to be highly

significant, Pr{F(5,474)>84.49}=0.0001. Thus, training was effective in

improving payoff scores across allthree ANN models.

F Value

ANOVA Procedure

Dependent Variable: Payoff

Sum of Mean

Source DF Squares Square

Model 5 6764.2609939 1352.8521988 17.17

Error 474 37347.5677842 78.7923371

479 44111.8287780Corrected Total

Source DF SS Mean Square F Value Pr > F

Training 1 6657.3972301 G657.3972301 84.49 O.0001

Representation 2 49.6538772 24.8269386 0.32 0.7299

Training'Representation 2 57.2098865 28.6049432 0.36 0.6958

Table 6-2. Two-way ANOVA of Training for Optimal

Analysis of ANN Mode_ of Subject Performance

Order.

Once the ANN models were shown to be capable of learning, the

models were then applied to simulate subject performance. To increase

fidelityto subject training conditions,12 models (ANN_P to ANN_AA)

were trained foi"one epoch using displayed rectangle patterns for sessions

on days 2-4. The 12 models used forthe 4 differentsubject reactiontime

profilesand the 3 differentinput representations. The trained weights
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from the models were then used by models ANN_D to ANN_O to predict

performances for day 5 displayed rectangle patterns. To testthe effectof

trained versus untrained weights, initialrandom weights were also used

by models ANN_D to ANN_O to predict outcomes for day 5 patterns. The

differencebetween offsetsgenerated by models using untrained weights

and trained weights were then compared across subject reaction times and

input representations. Thus, the amount of offsetdifferencemeasured a

moders learning capability.The mean of offsetdifferenceis calculated as

follows:

Offset_difference_mean = Z (untrained_modeli - trained_modeli) / 80

for i=1,...,80

where untrained_modeli isthe number of offsetsgenerated by the model

using untrained weights for displayed rectangle pattern i,and

trained_modeli is the number of offsetsgenerated by the model using

trained weights for pattern i. Thus, a positivemean of differencevalue

signifiesthat learning has occurred. A negative mean of differencevalue,

however, indicatesthat the model has not learned. Table 6-3 shows the

mean of the oR'setdifferencesper displayed rectangle pattern for each of the

models.
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Subject
Dimensional

Representation

Relational

Pair-wise
Relational

2

3

4

Model: __D

Mean of Difference*: 0.075

Model: ANN_G

Mean ofDifference: 0.125

Model: A.NN_J

Mean ofD/fference:0.150

Model: ANN_M

Mean of Difference: 0.088

[Model: ANNE

Mean of Difference: .0.025

Model: ANN H

Mean of Difference: 0.050

Model: ANN K

Mean of Difference: -0.138

Model: ANN N

Mean of Difference: 0.075

Model:ANN F

Mean ofDifference:0.575

Model:ANN I

Mean ofDifference:0.288

Model:ANN_L

Mean ofDifference:0.350

Model:ANN_O

Mean ofDifference:0.400

*Mean ofdifferencebetweenresultsofmodelusinguntrainedweightsandmodel

using trained weights.

Table6-3.ArtificialNeuralNetworkOffset

ResultsafterITrainingEpochon SubjectOrder

An ANOVA table was constructed to determine the significanceof

the offsetdifferencesin models ANN_D to ANN_O. Table 6-4 shows a two-

way ANOVA with representation and subjectreaction time (Subject 1,

Subject 2, Subject 3, and Subject 4) as the two effects.

as follows:

Offset_differencejmk = tt + Representationj + Subjectm + {6.1}

(Representation*Subject)ira + errorjmk

for j=1,2,3; m=1,2,3,4; and k=l,...,80.

The analysis found the Representation effect to be significant,

Pr{F(2,948)>6.75}=0.0012.

The ANOVA model is
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ANOVA Procedure

Dependent Variable: Offset_dlfference

Sum of

Source DF Squares

Mean

Square

Model 11 34. 98645833 3. 18058712

Error 948 2027.01250000 2.13819884

Corrected Total 959 2061.99895833

Source DF SS Mean Square F Value

Representation 2 28. 85833333 14. 42916667

Subject 3 1.06145833 0. 35381944

Representation*Sub ject 6 5.06666667 0.84444444

Table 6-4. Two-way ANOVA _of Training on

Subject Order for I Epoch

F Value Pr > F

1.49 0.1304

Pr > F

6.75 0.0012

0.17 0.9196

0.39 0.8825

To find the source of significance within the representation effect, the least

significant difference (LSD) procedure was used. The procedure conducts

multiple pair-wise t-test comparisons of treatment means to categorize

similarities and differences. Table 6-5 shows the groupings of means

across input representations and subject reaction time profiles. The pair-

wise relational model means were significantly different than means for

relational and dimensional models. Thus, even after only one epoch of

training, the model showed the ability to improve performance. Although

the input representation effect was significant, the overall model was not,

Pr{F(ll,948)>l.49}=0.1304. Thus, to determine the full capability of the ANN

models to learn subject order, more training was performed.
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T tests (LSD) for variable: Offset_difference

NOTE: This test controls the type i comparisonwise error rate not the

experimentwise error rate,

Alpha- 0.05 df- 948 MSE- 2.138199

Critical Value of T- 1.96

Least Significant Difference- 0.2269

Means with the same letter are not significantly different.

T Grouping Mean Observations Representation

A

B

B

B

0.4031 320 Palr-wise Rel.

0.1094 320 Dimensional

-0.0094 320 Relational

Alpha- 0,05 df- 948 MSE- 2.138199

Critical Value of T- 1.96

Least Significant Difference- 0.262

Means with _he same letter are not significantly different.

T Grouping Mean Observations Subject

A 0.2083 240 1

A

A 0.1875 240 4

A

A 0.1542 240 2

A

A 0.1208 240 3

Table 6-5. LSD Analysis of Training on

Subject Order for 1 Epoch
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To insure the weights were trained (stabilized from major

fluctuations), the models ANN_P to ANN_AA were run for 20000 epochs.

The trained weights were then used by models ANN_D to ANN_O to

predictperformances forday 5 rectangle patterns. To testthe effectof

trained versus untrained weights, initialrandom weights were again used

by models ANN_D to ANN_O to predict outcomes forday 5 patterns. Table

6-6 shows the offsetdifferencesforthe models.

Representation

Subject Pair-wise
Dimensional Relational Relational

Model:ANN_D

Mean ofDifference*:0.613

Model:ANN_G

Mean ofDifl'erence:0.325

Model:ANN J

MeanofDifference:0.i88

Model:ANN M

MeanofDifference:0.112

[Model:ANNE

MeanofDifference:0.612

Model:ANN_H

MeanofDifference:0.450

Model:ANN_K

Mean ofDifference:0.750

Model:ANN_N

Mean ofDifference:0.562

Model:ANN F

MeanofDifference:I.162

Model:ANN_I

MeanofDifference:1.012

Model:ANN L

Mean ofDifference:0.950

Model:ANN_O

Mean ofDifference:1.112

*Mean ofdifferencebetweenresultsofmodelusinguntrainedweightsandmodel

usingtrainedweights.

Table6-6.ArtificialNeuralNetworkOffsetResults

after20000TrainingEpochon SubjectOrder

An A.NOVA table was constructed to determine the significance of

training for 20000 epochs in models ANN_D to ANN_O. Table 6-7 shows a

two-way ANOVA with input representation and subject reaction time as
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the effects. The ANOVA model is the same as {6.1}. The analysis found not

only the representation to be significant, Pr{F(2,948)>18.43}=0.0001, but also

the overall model to be significant, Pr{F(ll,948)>3.99}=0.0001. Thus,

training for 20000 epochs significantly improved learning from training for

1 epoch.

ANOVA Procedure

Dependent Variable: Offset difference

Sum of

Source DF Squares

Model 11 109.33333333

Error 948 2359.85000000

Corrected Total 959 2469.18333333

Source DF SS

Reprelentation 2 91.75208333

Subject 3 6.60000000

Representation*Subject 6 10.98125000

Table 6-7. Two-way

Subject Order

Mean

Square

9. 93939394

2.48929325

F Value

3.99

Mean Square F Value

45. 87604167 18.43

2.20000000 0.88

1.83o2o833 o._4

ANOVA of Training on

for 20000 Epochs

Pr > F

0.0001

Pr > F

0.0001

0.4490

0.6213

Further investigationusing the LSD procedure shows the importance of the

type of input representation in determining a model's abilityto learn. Table

6-8 shows that the means of differenceswere significantfor each of the

input representations. The pair-wise relationalmodels learned most

effectively with a 1.059 mean reduction of offset difference. Relational

models did not learn as well with a 0.5938 mean reduction of offset

difference. The dimensional model learned the least with a 0.3094 mean

reduction of offset difference. Relatively, the pair-wise relational models

were far superior in learning than models with the other two

76



representations. Perhaps the success of the pair-wise relational models

could be attributed to their ability to capture configural feature information

used by the subjects.

T tests (LSD) for variable: Offset difference

NOTE: This test controls the type I comparisonwise error rate not the

experimentwise error rate.

Alpha- 0.05 dr- 948 MSE- 2.489293

Critical Value of T- 1.96

Least Significant Difference- 0.2448

Means with the same letter are not significantly different.

T Grouping

B

C

Alpha- 0.05

Mean Observations Representation

1.0594 _2a P,Iz-wise Rel.

0.5938 320 Relational

0.3094 320 Dimensional

dr- 948 MSE- 2.489293

Critical Value of T- 1.96

Least Significant Difference- 0.2827

Means with the same letter are not significantly different.

T Grouping Mean Observations Subject

A 0.7958 240 1

A

A 0.6292 240 3

A

A 0.5958 240 2

A

A 0.5958 240 4

Table 6-8. LSD Analysis of Training on Subject; Order for

20000 Epochs

Weights Analysis for Pair-wise Relational Models

The significance of the pair-wise relational models raised an

important question. Were the weights personalized to each subject? Or did

the weights reveal diagnostic capabilities common to all subjects? To
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answer the question, weights trained by a pair-wise relational model using

one subject reaction time profile (ANN R, ANN_U, ANN_X, or ANN_AA)

were used to predict performances for models with a different reaction time

profile. The configuration of the test was as follows:

Train on Model: Predict on Models:

ANN_R ANN I, ANN_L, ANN O
ANN_U ANN_F, ANN_L, ANN_O

ANN_X ANN_F, ANN I, ANN_O
ANN_AA ANN F, ANN_I, ANN L

Each training model was run for 20000 epochs on 240 rectangle patterns

(days 2-4). The trained weights were then used by the prediction models to

generate offset profiles for day 5 patterns. Table 6-9 shows the offset means

per pattern for the 80 day-5 patterns. The right-hand column represents

the average offsetof 3 models, whereas the lef_-hand column shows one

moders means offset.

SubjectProfile Trainon Same Subject Trainon DifferentSubject
forPrediction Profileas PredictionModel Profileas PredictionModel

2

Offset Mean: 2.138

OffsetMean: 2.000

Off_t Mean: 2.175

Offset Mean: 2.138

OffsetMean: 2.117

Offset Mean: 2.196

Offset Mean: 2.150

OffsetMean: 2.138

Table 6-9. Artificial Neural Network Offset
Results for Interchanged Weights

78



Comparisons between means in table 6-9 clearly show that a

significant difference does not exist between the columns. Thus, weights

trained on one subject reaction time profile could be used to predict on

another profile without significant performance variations. Perhaps the

trained weights for the pair-wise relational models carried diagnostic

information common to all subjects.

Skeletonization

To unlock the success of the pair-wise ANN model, a technique was

needed to look inside its workings. In particular, the technique should

determine which input nodes were relevant and, therefore, attended by all

models. Mozer and Smolensky (1989) developed a method, called

skeletonization, to compute a measure of relevance which identifies critical

input or hidden layer nodes and trims least relevant nodes. The

skeletonization process is an iterative one. Backpropagation training is

first performed to meet a performance criteria. Once met, the ANN model

then trims the least relevant node. The process is repeated until the

training criteria can no longer be met. The skeletonization procedure was

adapted to the pair-wise relational ANN model in order to find a common

diagnostic set of input nodes. Figure 6-6 shows the adaptation.
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Figure 6-6. Skeletonization Flowchart

The adaptation consisted of two phases. The first phase involved training

using the backpropagation algorithm. Once the maximum number of

training epochs was reached (arbitrarily set at 100), the skeletonization

procedure was executed. After the final input pattern was presented, and

the relevance parameters updated, the least relevant input layer node was

trimmed from the model. The relevance measure, P, of an input node, i, is

calculated as follows:
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P = _:_}(j) * W(j)(i) * X(i)
J

Where W represents weights from input node i to hidden node j and X

represents input layer nodes. Once the least relevant node was trimmed,

backpropagation learning occurred once again to train the reduced model.

After training, the skeletonization procedure was again executed. This

process continued until all input layer nodes had been trimmed. For a

more detailed description of the skeletonization procedure, see Appendix 1.

Figures 6-7 and 6-8 show skeletonization results of the pair-wise

relational models. Figure 6-7 depicts the trend of average payoff score at the

final epoch before skeletonization. The overlay shows the trend of all four

pair-wise relational models (ANNF, ANN_I, ANN_L and ANN_O).

Figure 6-8 shows the number of output layer nodes surpassing the error

threshold (threshold < target node value - output layer node value) for the

pair-wise relational models. As the number of trimmed nodes increased,

the average payoff score decreased, and the number of nodes surpassing

the threshold increased.
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To reveal the importance of each input layer node, a profile of the
*F

trimmed nodes was made. By showing which nodes were relevant among

all input layer nodes, a set of attended dimensional Features in the R2_l _

could be classified. Figure 6-9 shows a representation of the state of each of

the 4 models with different subject reaction time profiles after 10 nodes have

been trimmed. For each model, the remaining nodes are shown as

circular numbered nodes. Each untrimmed pair-wise relational model has

30 input layer nodes divided into five feature representations as discussed

in Chapter III. After 10 nodes have been trimmed, figure 6-9 shows 21

height (H) nodes, 19 width (W) nodes, 14 H*W nodes, 10 H+W nodes, and 16

H_-W nodes remaining. Thus, after executing the skeletonization

procedure, the height and width dimensions appeared to be more

diagnostic than the others.

As a tool, the skeletonization procedure can analyze an ANN model

for the most, as well as least, relevant nodes. Its application to the pair-

wise relational model was not intended to give a detailed description of the

worth of each input node. Rather, it was meant to give an overview of the

content of the nodes with respect to the relevance of input features. In

terms of the error signature discussed in Chapter II, the height order

heuristic has a slope of 1 on the In(height) X In(width) graph. Since the

optimal (H2+W) heuristic has a slope of 1/2, the similarity between them

makes height an attractive alternative that is perceptually available.

Perhaps the skeletonization procedure was able to.capture the diagnosticity

of the height heuristic.
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Figure 6-9. Input Nodes Remaining after 10
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GA Model Analysis

Before the GA models could be used to model subject performance,

the models needed first to show the ability to learn the RTT. Thus, models

GA_A, GA_B, GA_C, and GAD were trained on the payoff scores

generated by the optimal order for 1200 generations on 240 rectangle

patterns (days 2-4). The payoff scores were average scores of all 50 rules in

the population per each trial. The criteria of learning, as mentioned in

Chapter 4, was the RTT payoff score. Unlike the ANN models, which had

one measure of performance (one offset) per pattern, the genetic learning

models had 50 measures (one per rule string in rule base) per generation.

1200 training generations were used to insure stabilization of the rule

populations. The trained rule strings were then used by models GA_E,

GA_F, GA_G, and GA_H to predict outcomes for displayed rectangle

patterns on the final session (day 5). To test the effect of trained versus

untrained rule strings, the initial, untrained rule strings were also used by

models GA_E to GA_H to predict outcomes for day-5 patterns. Table 6-10

shows the difference between offsets generated by models using untrained

and trained rule strings.

85



Subject

1

2

3

4

Model

Model: GA_E

Mean of Difference: 15.138

Model: GA_F

Mean of Difference: 77.638

Model: GA_G

Mean of Difference: 34.512

Model: GA_H

Mean of Difference: 58.888

Table 6-I0. Genetic Algorithm OffsetResults after
1200 Training Generations on Optimal Order

An ANOVA table was constructed to determine the significance of the offset

differencesin models GA_E to GA_H. Table 6-11 shows an one-way

ANOVA with subject reaction time as the effect.The ANOVA model is as

follows:

Offset_differencemk = _ + Subjectm + errormk /6.2/

for m=1,2,3,4; and k=l,...,80.
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ANOVA Procedure

Dependent Variable: Offset_difference

Sum of

Source DF Squares

Model 3 180023. 43750

Error 316 881949. 95000

Corrected Total 319 1061973.38750

Source DF Type I SS

Subject 3 180023. 43750

Table 6-11.

Optimal Order

Mean

Square

60007.81250

2790.98085

F Value Pr > F

21.50 0.0001

Mean Square F Value Pr > F

60007.81250 2!.50 0.0001

One-way ANOVA of Training on

for 1200 Generations

The analysis found the subjectreaction time profilesto be highly

significant,Pr{F(3,316)>21.50}=0.0001. Thus, the amount of learning done

by models GA_E to GA_H depended highly on the reaction times of the

subjects. Nevertheless, allof the models showed performance

improvements through training.

Analysis of GA Models of Subject Performance

Due to variations in subject reaction times, the GA learning criteria

needed to change in order for GA models to simulate subject performance.

To modify the criteria,a rewarding scheme based on the offsetmetric was

established as follows:

0 Offset ->

2 Offset8 ->

3 Offsets ->

4 Offsets ->

payoff score= I00

payoff score = 66

payoff score = 33

payoff score = 0
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Thus, as the offsetsare generated by subject and GA model ordering

differences,an improvement in payoff performance will naturally reduce

the number of offsets.

Using the revised learning criteria,the GA models were trained on

subject performance. The GA rule population for models GA_I, GA_J,

GA_K, and GA_L were trained on 240 patterns (days 2-4). The trained rule

strings were then used by models GA_E, GA_F, GA_G, and GA_H to

predict outcomes for displayed rectangle patterns on the finalsession (day

5). To testthe effectof trained versus untrained rule strings,the initial,

untrained populations were also used by models GA_E to GA_H to predict

outcomes forday 5 patterns. The differencebetween offsetsgenerated by

models using untrained and trained rule strings were then contrasted

across subject reaction times. Table 6-12 shows the mean of the o_set

differencesper displayed rectangle pattern foreach of the models. All of

the models showed performance improvements through training.

Model

Subject

1

4

Model: GA_E

Mean of DiiTerence: 21.175

Model: GA_F

Mean of Difference: 73.462

Model: GA_G

Mean of DifTerence: 60.862

Model: GA,..H

Mean of Difference: 55.825

Table 6-12. Genetic Algorithm Offset Results

on Subject Order
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An ANOVA table was constructed to show the effectsof training models

GA_E to GA_H on subject order. Table 6-13 shows an one-way ANOVA

with subjectreaction time as the effect.The A.NOVA model is the same as

{6.2}.The analysis found, as in optimal order training results,the subject

reactiontime profilesto be highly significant,Pr{F(3,316)>13.24}=0.0001.

Thus, although the models showed performance improvements, those

improvements depended greatly on the reaction times of the subjects.

ANOVA Procedure

Dependent Variable: Offset_difference

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 120098.41250 40032.80417 13.24 0.0001

Error 316 955690.47500 3024.33695

Corrected Total 319 1075788.88750

Source DF SS Mean Square F Value Pr > F

SubjecT. 3 120098.41250 40032.80417 13.24 0.0001

Table 6-13. One-way ANOVA of Training on

Subject Order

GBML Model Analysis

To determine whether the GBML models were capable of learning,

the models were trained on 320 patterns (days 2-5)for 100 generations. The

payoff profilegenerated by the models GBML_A, GBML_B, GBML_C, and

GBML_D are shown in figures6-10 to 6-13. The payoff score profile

represents the average payoff score forthe 50 rules in the population traced

over 100 generations. After experimenting with differentcombinations of

model parameters, the one with the following settingswas chosen based on
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performance: mutation probability set at 0.5; reward multiplier set at 1.1

times the bid; and the payoff threshold was set to geometrically increase

from 55.0 to 90.0. Figure 6-10 to 6-13 shows that the GBML models are more

volatile than previously expected. One rationale for the erratic behavior

could be found in the mutation rate. Since earlier attempts of lower rates

failed to improve performance, the rate was set at 0.5 to insure variability.

However, with the increased rate, stability was sacrificed. Another reason

for the model behavior could be found in the payoff threshold. As the

threshold increased to a value not attainable by the models, performance

became erratic and unpredictable.
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Discussion of Remdts

Of allthe models, the ANN structure shows the most promise.

Through analysis of the learning abilitiesof the differentrepresentations,

strategiesof human decision-making could be inferred. The dimensional

ANN models showed some learning abilities.Relational ANN model

results show definitesigns of improvemen t. Nevertheless, initial

evaluations after1 epoch indicate slow network responsiveness forboth

representations. The pair-wise relationalANN appears to be the most

capable network to model skilleddecision-making. Initialevaluations after

1 epoch indicate signs oflearning. Training for 20000 epochs confirms

initialobservations. Skeletonization results suggest height and width cue

utilization.However, the skeletonizationprocess--thedecision of when to

trim the nodes and when the network has reached the minimal

configuration--iscrudely approximated from a graph, and should be

considered only a rough approximation.

GA models also showed the abilityto learn subject performance.

However, since the resultant rule stringswere the products of random

search processes, the amount of learning varied widely from one model to

the next. In addition,each rule stringwas unique, and did not reveal an

accumulation of learning from past experience (as in the ANN weights).

Thus, a skeletonization-likeprocedure did not existfor the GA models.

Furthermore, the trained population of rule strings converged on one

unique representation. The trained rule string for model GA_I interpreted

to the heuristicH2/W3. The rule for model GA..J interpreted to the



heuristic Hs/Ws. The rule for models GA_K and GA_L was also translated

to H3fC¢8. In spiteofthe lack ofpopulation diversity,the models produced

heuristicssimilar to the optimal heuristicby training on subject orders.

GBML models were not able to learn subject performance with any

consistency. In order forthe model to learn, a prioriknowledge of the

payoff score range, with respect to differentsubject reaction times, was

needed. Furthermore, the balance between stabilityand learning was

difficultto reach. Therefore, too much subject-dependent information was

required by the GBML model to merit the effortof continued modeling.
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• Relational

The relationalmodels showed better resultsthan the dimensional

counterparts. However, compared to the pair-wise relationalmodel
results,the relationalANNs performed poorly.

• Pair-wise Relational

The pair-wise relationalresultswere the best of the three types of models.
The success of the models suggests that subjectsmay attend to configural
features to more than individual features._Thus, a person may see that

rectangle A is tallerthan rectangle B rather than rectangle A is 2X mm tall
and rectangle B is X mm tall.This supposition is consistentwith the

findings of Gluck, Bower, and Hee (1989).

In addition to diagnosticity,the internal structure of the ANNs could also

be examined. An examination of the internal structure using the

skeletonizationprocedure revealed the relevance of each node based on the

structure of past input patterns. The relevant nodes denoted the attended

input features. Assuming the ANN model attuned to the same set of input

features as the subject. The relevant nodes of the ANN model, therefore,

could also represent the features the subject considered most diagnostic to

the RTT. A simplisticapplication of the skeletonizationprocedure showed

height and width as the diagnosticfeatures. However, the skeletonization

procedure provided only a cursory look at feature diagnosticity.

PRECEDING PAGE BLANK NOT FILMED
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GA models generated rule strings which successfullysimulated

subject performance. The factthat each of the rule string populations

converged to one unique rule representation after training presented the

following dilemma:

• Heuristic interpretation

In terms of the In(height)Xln(width) graph, model GA_I generated a slope
of 3/2, and models GA_J, GA_K, and GA_L allproduced slopes of 1. Thus,
models GA_J to GA_L allformulated heuristicssimilar to the optimal
heuristic while training on subject order.

• System volatility

If subject performance could be described by a rule string,then the
performance of the model could be excellent. However, ifthe rule string
required a perceptually unavailable features--like1/W^2--the model could be
difficultto interpret psychologically.

The success of the GA models, therefore,can be attributed to a rule string

representation which sufficientlydescribes subject performance.

Contrary to De Jong's (1990) characterizationsof the classifier

(GBML) approach, the behavior of the GBML models was chaotic. This

behavior could be attributedto the followingfactors:

• Function ofBBA not captured in MBBA

The bucket brigade algorithm contributesto the formation of default
hierarchies of rules within a classifiersystem (Grefenstette,1987). The
default hierarchies are constructed through multiple transactions of each
message among the rule strings. The link that is created between rule
strings that have won bids to the same message defines a set of global rules.
The stabilityof classifiersystems is due largely to the existence of these
links. Thus, as the GBML model of the RTT restrictedtrading of messages
to only one transaction,the links (and the stability)did not exist.
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• A prioriinformation not available

Because a payoff threshold was required for the GBML models, knowledge

ofthe range of the payoff score (interms of the subject reaction times) was
needed. Thus, unlike the ANN models, the GBM_L models required both

reaction time and rectangle ordering information to learn the RTT.

Implications of Findings and Suggestions for Future Research

Words of caution must accompany the following observations. The

RTT environment is relatively simplistic With few perceptual cues available

to a subject. To model skilled human decision-making in a more complex

task would require a thorough analysis of the environment. Findings of

this research suggests the following:

• Concentrate on pair-wise relational representations

Results of the ANN models suggest that configural features are more
informative than individual features. If the pair-wise relational models are
indicative of human decision-making processes, then configural features
in the environment should play a key role as input representations in
future models. Rather than focussing on dimensional aspects of graphical
features, perhaps the emphasis should be on relational characteristics (i.e.
taller, smaller, larger, etc...).

• Seek rules to exploit consistencies in subject performance

Success of the GA models suggests that, given sufficient rule string and
input representations, subject performance could be simulated by genetic
algorithm techniques.

Future research in skilleddecision-making should address

upscaling current GA and ANN models to simulate human performance

in more complex environments. In particular,the following issues need to

be faced:

• Rule string selection

To use a GA model to simulate decision-making in complex settings,a

perceptually available rule string representation is needed. Furthermore,



objective functions should generate values that relate with perceptually
available quantifies (i.e. shape or area).

* Input feature selection

Complex environments offernumerous cues as either primitive features,
emergent features,or artifactualelements. To model human
decision-making in such settings,a metric to selectrelevant features is
needed.

Pao described the input selectionissues as follows:

The choice of features for the description of objects--

which may be concepts or physical objects or situations or
events--is a difficult but essential preprocessing task in the

implementation of computer-based pattern recognition.
To some extent, there is no right or wrong choice, as

long as sufficient information has been included in the set of
feature values. However, inappropriate choices lead to the
need for complex decision rules or mappings ... whereas
incisive choices result in simple and comprehensive rules.

The task of determining the [feature representation] is a
crucial part of implementing computer-based pattern
recognition, and the problem remains with us in adaptive
pattern recognition. Often, however, we have the opportunity
to discover adaptively which of the [feature representation]
features are important and which are irrelevant.
(Pao, 1989, p. 9)

thesis

Input feature representations forANN models described in this

did promote efficientmodel behavior. Perhaps the finding of the

significance of pair-wise relational features could aid feature selection in

the future.
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APPENDIX 1

PSEUDO-CODE OF ARTIFICIAL NEURAL NETWORK MODEL OF

PERCEPTUAL DECISION-MAKING
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Note that allfunctions and fles are enclosed by <>.

Program Description

The program is an artificialneural network with a 2-1ayer weights

architecture and updating aftereach pattern.

Program Initialization

Program initialization takes place through reading files

<input/bp_file> and <Tulga_file> and through user interface at execution.

User interface prompts user to choose type of trace (per epoch or per

pattern) and skeletonization. <input/bp_fi]e> is read by

<Backprop::initialize>. The following variables/constants are read by

<Backprop::initialize>:

1) Number of rows of input signal pattern

2) Number of columns of input signal pattern

3) Number of rows of target pattern

4) Number of columns of target pattern

5) Number of signal patterns

6) Number of training epochs

7) Number of hidden layer elements

8) Starting learning rate. Learning rates are used for updating weights

hidden_layer_weights = hidden_layer_weights + learning_rate *

input_node_value * hidden_delta_value

output_layer_weights = output_layer_weights + learning_rate *

hidden_node_value * output_delta_value

9) Ending learning rate
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10) Type of data (binary or bipolar)

11) Learning threshold (allowable difference between target and output)

12) Values of input and target slab nodes (target slab values initialized

to 0)

13) Values of input and output layer weights

(random value x such that -1< x < 1) read from <input/weight_file>

The following variables/constants are calculated by <Backprop::initialize>:

1) Learning rate multiplier (geometric progression based on total

number of training patterns)

2) Input vector length (number of rows * number of columns)

3) Target vector length (number of rows * number of columns)

4) Relevance toggles (initialized to 0)

<Tulga_file> is read by <Tulga::init_Tulga>. In addition, files

<output/ordering>, <output/payoffs>, and <output/pattern tr> are

initialized and replace old files. The following variables/constants are read

by <Tulga: :init_Tulga>:

1) Identification number of boxes to be processed

2) Subject reaction time

The following variables/constants are calculated by <Tulga::init_Tulga>:

1)

2)

3)

Epoch counter (initialized to 1)

Pattern counter (initialized to 1)

Payoff score, average, sum, threshold limit, and standard deviation

(initialized to 0)
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Program Execution

The program contains a main loop which executes one of the

following three subroutines:

1) Backpropagation learning

2) Feedforward

3) Skeletonization

Nested within the main loop isa secondary loop composing the first

subroutine. The secondary loop consistsof the following elements:

1) <Tulga::feedforward> executes <Backprop::FFhidden> and

<Backprop::FFoutput>

<Backprop::FFhiddert> sums hidden slab node inputs as follows:

hidden_nodes_sum_inputs = hidden_nodes_sum_inputs +

hidden_weights_strength * input_nodes_value

<Backprop::FFhidden> also calculatesthe hidden slab node

activationsusing the binary logisticsigmoid function

<Backprop::FFoutput> sums output slab node inputs as follows:

output_nodes_sum_inputs = output_nodes_sum_inputs +

output_weights_strength * hidden_nodes_activation

<Backprop::FFoutput> also calculatesthe output slab node

activationsusing the binary logisticsigmoid function

2) <Tulga::cognition> calculates cardinality of

output_nodes_activations

(strength order),converts strength order to selectionorder, writes

selectionorder to file<output/ordering>, calculatespayoff score and
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3)

4)

optimal order, converts optimal order to optimal strength order, sets

target vector elements based on strength order, and calculates

over_thresh (number of output_nodes_activations surpassing

allowed threshold from target_nodes_value)

<Tulga::backpropagation> executes <Backprop::BPoutput> and

<Backprop::BPhidden>

<Backprop::BPoutput> calculates error values as follows:

error_value = target_nodes_value - output_nodes_activations

<Backprop::BPoutput> calculates the output layer delta values as

follows:

output_deltavalue=

logistic_sigmoid_derivative(output_nodes_activations) *

error value

<Backprop::BPhidden> calculates the hidden layer delta values as

follows:

hidden_delta_value -

logistic_sigmoid_derivative(hidden_nodes_activations) *

Y. (output_layer weights * outputdeltavalue)

<Tulga::update_weights> updates weights using the delta rule and

executes subroutines based on following conditionals:

if epoch counter is equal to the maximum number of training epochs,

write message to file <output/payoffs>, save hidden and output

layer weight strengths to file <output/new_weights>, if per

epoch trace is off, calculate payoff statistics and save results to
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file <output/payoffs>, and return 0 as current status

if pattern counter is equal to maximum number of patterns and the

number of error terms less than the threshold is within limits,

write message to file <output/payoffs>, save hidden and output

layer weight strengths to file <output/newweights>, if per

epoch trace is on, calculate payoff statistics and save results to

file <output/payoffs>, and return 0 as current status

if pattern counter is equal to maximum number of patterns, if per

epoch trace is on, calculate payoff statistics and save results to

file <output/payoffs> else save current payoff and threshold

information to file <output/pattern tr>, reset pattern counter

to 1, increment epoch counter, set threshold counter to 0,

return 1 as current status

if none of the above conditions hold, if per epoch trace is off, save

current payoff and threshold information to file

<output/pattern tr>, increment pattern counter, and return 1

as current status

if current status is 0, the program exits the

secondary loop

If the feedforward option is selected, the following loop is executed for the

maximum number of epochs:

1) <Tulga::feedforward> (as explained in secondary loop description)

2) <Tulga::cognition> (as explained in secondary loop description)

If the skeletonization option is selected, the following loop is executed:
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1) Backpropagation Learning (as explained in secondary loop

description) executes for the maximum number of training epochs.

2) <Backprop::FFhidden> (as explained in secondary loop description)

3) <Backprop::FFoutput> (as explained in secondary loop description)

4) <Tulga::cognition> (as explained in secondary loop description)

5) <Backprop::SKoutput> sets the error values as follows:

if output_nodes_activations is greater than

target_nodes_value, set error_value to -1.0 else set

error value to 1.0 next calculate the

output layer delta values based on the errors

6) <Backprop::SKhidden> calculates the hidden layer delta values and

the input node relevance values as follows:

input_nodesrelevance = 0.2 * inputnodes_value *

F_ (hidden layer_weights*hidden_delta_value) +

0.8 * input_nodes_relevance

Note: constants are based on paper by Mozer and Srnolensky

(1989).

To complete the skeletonizationoption,<Backprop::SKremove> and

<Tulga::reset> are executed and a toggle is returned to determine

continuation of program. <Backprop::SKremove> calculates the irrelevant

node (node with smallest relevance value),writes relevance value of all

nodes to file<output/payoffs>, sets input_nodes_value ofirrelevant node to

0.0,sets allweights emanating from the irrelevantnode to 0.0,reset all

input_nodes_relevance to 0.0,and sets toggle to 0 ifallnodes have been
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"trimmed". If toggle is set to 0, skeletonization terminates. <Tulga::reset>

resets epoch and pattern counters to 1, payoff average, payoff sum,

threshold limit and standard deviation of payoffs to 0, and resets learning

rate to value specified initially in file <input]bp_file>.
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APPENDIX 2

PSEUDO-CODE OF GENETIC MODEL OF

PERCEPTUAL DECISION-MAKING
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Program Description

The program contains options to execute either a pure genetic

algorithm or a GBML.

Program Ini_,liTatlon

Program initialization takes place through reading files

<input/rulefile> and <input/rec_file> and through user interface at

execution. User interface prompts user to choose either a pure GA or

GBML and the number of generation to execute. Files <output/trace> (trace

of rules at each generation) and <output/rulestrength> (strength of each

rule at each generation) are initialized. The following variables/constants

are read by <Cs::rule_init> from file <input/rulefile>:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Random number seed

Upper limit of random number sequence

Lower limit of random number sequence

Probability of mutation in the genetic algorithm (stringwill mutate if

probabilityislower than stated)

Bid percentage (forGBML) in decimal form

Reward (forGBML) as percentage (in decimal form) of bid

Begin payoff threshold (forvariable threshold in a GBML)

End payoff threshold (forvariable threshold in a GBML)

Length of rule string

Number of strings in population

Number of components in rule string (ex.in a+b there are three

components)
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12) Rule string bits

13) Original rule strength (forGBML)

The following variables/constantsare read by <Cs::rule_init>from file

<input/rec_file>:

1) Number of rectangle sets

2) Identificationnumber ofboxes to be processed

3) Height and width ofboxes

4) Subject reaction time

In addition to reading variables and constants, the following subroutines

are executed by <Cs::rule_init>:

1) <Random::initialize_random> sets the seed, upper and lower limits

of pseudo-random number generator

2) <Genetic::set_mutate_probabilit3r>sets the genetic algorithm

mutation probability

3) <Cs::set..payoff_information>sets the bid percentage, reward

percentage, and payoff threshold. Also calculatesthe threshold

multiplier (uses geometric progression based on totalnumber of

generations)

Progmm Execution

Ifthe pure GA is chosen, the following functions are executed for

number_of generations * number_of_patterns times:

1) <Cs::pureGA> executes <Cs::translate>, rule_strength, and offsets

from optimal order for allrule strings

<Cs::translate> uses the current rule interpretation:
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h ^a (operators)w ^b

where h is height of rectangle,w is width of rectangle,and

operators are +, -,*,/.

2)

3)

4)

aa bb operators

ex. I0 01 IIi = hA2 /w

based on the rule used, a value is recorded for each rectangle

and ordered rule_strength represents the payoff score

calculatedgiven the ordering provided by <Cs::translate>

offsetsare calculatedby comparing the optimal order and the

<Cs::translate> order

<Cs::print_rules> writes rules of the current generation to file

<output/trace> and rule strength of allrule strings(as well as the

average rule strength) to file<output/rule_strength>

<Genetic::reproduce> reproduce performs the reproductive function

within the genetic algorithm. It takes the strongest (probabilistically)

rule to replace the weakest rule. Each rule is given a sloton the

"roulettewheel" based on the strength. The wheel is spun n times

for n rule strings in the population. The new population then

replaces the old.

<Genetic::crossover> performs "mating" between rules. It identifies

the number of pairs in population, pairs availablerule mates, selects

crossover site,and crosses bit information between pairs (thisportion

of code signifiesa major departure from conventional crossover
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procedures in that only a rule segment is crossed between mates)

5) <Genetic::mutate> mutate changes at most one rule string at

random given a probabilityof change. Ifthe pseudo-random number

generated isless than the mutate probability,a mutation sector (i.e.

rule components) is randomly generated and changed (ifrandom

number is greater than .5set binary allelto I otherwise, set to 0)

If the GBML ischosen, the followingfunctions are executed for

number_of_generations times:

1) <Cs::aoc> is the apportionment of creditsystem. Must be given input

rectangles and time. For the number of messages (usually number

of rule strings in population), <Cs::aoc> calculates the maximum bid

(rule_strength * bid_percentage), pays the bid from winning rule

string,<Cs::translate> translates winning rule and return order,

calculatespayoff score (forstatisticalreasons), calculates the

number of offsetsof <Cs::translate> order from optimal order,and

reward (positiveor negative based on payoff threshold) the winning

rule string (rule_strength * reward_percentage)

2) <Cs':print_rules> (as explained in pure GA description)

3) <Cs::stats> calculatespayoff average and standard deviation for all

rectangle patterns in one CS generation.

4) <Cs::savePay'> records current CS generation, payoff average,

standard deviation,and offsetto file<output/payoffs>

5) <Genetic::reproduce> (as explained in pure GA description)

6) <Genetic::crossover> ('asexplained in pure GA description)
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7)

8)

<Genetic: :mutate> (as explained in pure GA description)

<Cs::reset..strength> resets all rule string strengths to the original

strength and modifies the payoff threshold (payoff-threshold =

multiplier * payoff-threshold)
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